Home
Class 12
MATHS
If x(1) and x(2) are the real and distin...

If `x_(1)` and `x_(2)` are the real and distinct roots of `ax^(2)+bx+c=0` then prove that `lim_(xtox1) (1+sin(ax^(2)+bx+c))^((1)/(x-x_(1)))=e^(a(x_(1)-x_(2))).`

A

does not exist

B

1

C

`oo`

D

`(1)/(2)`

Text Solution

Verified by Experts

`ax^(2)+bx+c=a(x-x_(1))(x-x_(2))`
`underset(xtox1)lim(1+sin(ax^(2)+bx+c))^((1)/(x-x_(1)))" "(1^(oo))" form")`
`=e^(underset(xtox_(1))lim(sin(a(x-x_(1))(x-x_(2))))/((x-x_(1))))`
`=e^(underset(xtox_(1))lim(sin(a(x-x_(1)).(x-x_(2))))/(a(x-x_(1))(x-x_(2))).a(x-x_(2)))`
`=e^(a(x_(1)-x_(2)))`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise 2.8|8 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Single)|76 Videos
  • LIMITS

    CENGAGE|Exercise Exercise 2.6|9 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If x_1 and x_2 are the real and distinct roots of a x^2+b x+c=0, then prove that lim_(n->x_1){1+"sin"(a x^2+b x+c)}^(1/(x-x_1))=e^(a(x_1-x_2))

lim_(xto0)(e^(ax)-e^(bx))/x

Evaluate lim_(x to 0) x^2 sin (1/x) .

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto1) (x^(2)+xlog_(e)x-log_(e)x-1)/((x^(2))-1)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

Evaluate: lim_(x->2)(sin(e^(x-2)-1))/(log(x-1))

Evaluate the limits lim_(x to 0) (e^(ax)-e^(bx))/x

The value of lim_(xrarr0) ((1+2x)/(1+3x))^((1)/(x^(2))).e^((1)/(e^(x))) is

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then