Home
Class 12
MATHS
Integrate cos^(−1)x/ -sqrt(1−x^2)...

Integrate `cos^(−1)x/ -sqrt(1−x^2) `

Text Solution

Verified by Experts

The correct Answer is:
D

We have `f(x)=(sin^(-1)(1-{x})cos^(-1)(1-{x}))/(sqrt(2{x})(1-{x}))`
`:.underset(xto0^(+))limf(x)=underset(hto0)limf(0+h)`
`=underset(hto0)lim(sin^(-1)(1-{0+h})cos^(-1)(1-{0+h}))/(sqrt(2{0+h})(1-{0+h}))`
`=underset(hto0)lim(sin^(-1)(1-h)cos^(-1)(1-h))/(sqrt(2h)(1-h))`
`=underset(hto0)lim(sin^(-1)(1-h))/((1-h))underset(hto0)lim(cos^(-1)(1-h))/(sqrt(2)h)`
In second limit, put `1-h=costheta.` Then
`underset(xto0^(+))limf(x)=underset(hto0)lim(sin^(-1)(1-h))/((1-h))underset(hto0)lim(cos^(-1)(costheta))/(sqrt(2(1-costheta)))`
`=underset (hto0)lim(sin^(-1)(1-h))/((1-h))underset(thetato0)lim(theta)/(2sin(theta//2))(becausethetagt0)`
`=sin^(-1)1xx1=pi//2`
and `underset(xto0^(-))limf(x)=underset(hto0)limf(0-h)`
`=underset(hto0)lim(sin^(-1)(1-{0-h})cos^(-1)(1-{0-h}))/(sqrt(2{0-h}")")(1-{0-h}))`
`=underset(hto0)lim(sin^(-1)(1+h-1)cos^(-1)(1+h-1))/(sqrt(2(-h+1))(1+h-1))`
`=underset(hto0)lim(sin^(-1)h)/(h)underset(hto0)lim(cos^(-1)h)/(sqrt(2(1-h)))`
`=1(pi//2)/(sqrt(2))=(pi)/(2sqrt(2))`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Numerical)|23 Videos
  • LIMITS

    CENGAGE|Exercise Exercise (Multiple)|18 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Integrate (cos(tan^(-1)x))/(1+x^(2)) w.r.t.x.

Integrate the functions 1/(sqrt(x^(2)+2x+3))

Integrate the functions (4)/(sqrt(1+x^(2)))

Integrate the functions sqrt(1+(x^(2))/9)

Integrate the functions sqrt(1-4x^(2))

Integrate the functions 1/(sqrt(x^(2)+4x+10))

Integrate (x^2 + 1) sqrt(x + 1)

Integrate the function (x-1)/(sqrt(x^(2)-1))

Integrate the functions 2/(sqrt(x^(2)-1))

Integrate the function 1/(sqrt(x^(2)+2x+2))

CENGAGE-LIMITS-Exercise (Comprehension)
  1. Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractio...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. Integrate cos^(−1)x/ -sqrt(1−x^2)

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a1gt a2gt a3 ...agt1 p1gt p2 gt ...pn gt0 ; such that p1 + p2+ p3 ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=lim(x to oo) (x+1-sqrt(ax^(2)+x+3)) exists finitely then The va...

    Text Solution

    |

  15. The value of lim(ntooo) [(1+2+3+...+n)/(n^2+5n+2)] is

    Text Solution

    |

  16. Evaluate lim(ntooo) [(1+2+3+...+n)/(5n^2+2n+1)]

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  19. If lim(xto0) (f(x))/(sin^(2)x)=8,lim(xto0) (g(x))/(2cosx-xe^(x)+x^(3)+...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |