Home
Class 12
MATHS
Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)...

Let `f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x))` for `x!=1`

Text Solution

Verified by Experts

The correct Answer is:
C, D

`f(1^(+))=underset(hto0)lim(1-(1+h)(1+h))/(h)"cos"(1)/(h)`
`=underset(hto0)lim(-h^(2)-2h)/(h)"cos"(1)/(h)=underset(hto0)lim(-h-2)"cos"(1)/(h)`
Thus, `underset(xto1^(+))limf(x)` does nto exist.
`f(1^(-))=underset(hto0)lim(1-(1-h))/(h)"cos"(1)/(h)`
`=underset(hto0)lim(-1(1-h^(2)))/(h)"cos"(1)/(h)``=underset(hto0)lim(h^(2))/(h)"cos"(1)/(h)=underset(hto0)lim h"cos"(1)/(h)=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x) =(1)/( x+1) Domain of y is :

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

Let f(x)=sqrt(1+x^(2)) then

f(x)=(x)/(x+1), [1,2]

if f(x) = (x-1)/(x+1) the f(2x ) is

If f (x) = (x- 1)/( x+1) x ne 1 Show that f(f(x) ) = (1)/(x) provided x ne 0

Let f(x)={:{(x+1,x gt 0),(x-1,x lt 0):}

For x in R-{0,1}, " let " f_(1)(x)=(1)/(x), f_(2)(x)=1-x and f_(3)(x)=(1)/(1-x) be three given functions. If a function, J(x) satisfies (f_(2) @J@f_(1))(x)=f_(3)(x), " then " J(x) is equal to

For each real x, -1 lt x lt 1 . Let A(x) be the matrix (1-x)^(-1) [(1,-x),(-x,1)] and z=(x+y)/(1+xy) . Then