Home
Class 12
MATHS
Let alpha,betainR be such that lim(xto0)...

Let `alpha,betainR` be such that `lim_(xto0) (x^(2)sin(betax))/(alphax-sinx)=1`. Then `6(alpha+beta)` equals___________.

Text Solution

Verified by Experts

The correct Answer is:
`(7)`

`underset(xto0)lim(x^(2){betax-((betax)^(3))/(3!)+...})/(alphax-(x-(x^(3))/(3!)+...))=1`
`implies" "underset(xto0)lim(x^(3)(beta-(beta^(3)x^(2))/(3!)+...))/((alpha-1)x+(x^(3))/(3!)+(x^(5))/(5!)+...)=1`
`implies" "underset(xto0)lim(x^(2)(beta-(beta^(3)x^(2))/(3!)+...))/((alpha-1)+(x^(2))/(3!)+(x^(4))/(5!)+...)=1`
`implies" "underset(xto0)lim(beta-(beta^(3))/(3!)x^(2)...)/((1)/(3!)-(x^(2))/(5!)+...)=1`
`:." "beta=(1)/(3!)=(1)/(6)`
`:." "6(alpha+beta)=6(1+(1)/(6))=7`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE|Exercise Single Correct Answer Type|59 Videos
  • LIMITS

    CENGAGE|Exercise Multiple Correct Answers Type|4 Videos
  • LIMITS

    CENGAGE|Exercise JEE Main Previous Year|8 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(xe^(x)-sinx)/x is

lim_(xto0)(sin(a+x)-sin(a-x))/x

lim_(xto0)(sinx(1-cosx))/x^(3)

lim_(xto0)(2"arc"sinx)/(3x)

lim_(xto0)(sin^(3)(x/2))/x^(3)

lim_(xto0)(1-cosx)/x^(2)

lim_(xto0)(e^(x)-e^(-x))/sinx

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

lim_(xto0)(sqrt(1+x^(2))-1)/x

lim_(xto0)(1-cos^(2)x)/(xsin2x)