Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then prov...

If `g(x)=int_(0)^(x)cos^(4)t dt`, then prove that `g(x+pi)=g(x)+g(pi)`.

Text Solution

Verified by Experts

We have `g(x)=int_(0)^(x)cos^(4)tdt`
`:.g(x+pi)=int_(0)^(x+pi)cos^(4)tdt`
`=int_(0)^(x)cos^(4)tdt+int_(x)^(x+pi)cos^(4)tdt`
`=g(x)+int_(0)^(pi)cos^(4)tdt [ :' "period of" cos^(4)t "is" pi]`
`=g(x)+g(pi)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If f(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s f(x)+f(pi) (b) f(x)+2(pi) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

Let f(x) be a continuous function AAx in R , except at x=0, such that g(x)= int_x^a(f(t))/t dt , prove that int_0^af(x)dx=int_0^ag(x)dx

If g(x)=int_0^x2|t|dt ,then (a) g(x)=x|x| (b) g(x) is monotonic (c) g(x) is differentiable at x=0 (d) gprime(x) is differentiable at x=0

f,g, h , are continuous in [0, a],f(a-x)=f(x),g(a-x)=-g(x),3h(x)-4h(a-x)=5. Then prove that int_0^af(x)g(x)h(x)dx=0

If g is inverse of f then prove that f''(g(x))=-g''(x)(f'(g(x)))^(3).

If f: RrarrR and g:RrarrR are two given functions, then prove that 2min.{f(x)-g(x),0}=f(x)-g(x)-|g(x)-f(x)|

Off(x)=int_0^x("cos"(sint)+"cos"(cost)dt ,t h e nf(x+pi)i s (a) f(x)+f(pi) (b) f(x)+2(pi) (c) f(x)+f(pi/2) (d) f(x)+2f(pi/2)

By using the properties of definite integrals, evaluate the integrals Show that int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx , if f and g are defined as f(x)=f(a-x) and g(x)+g(a-x)=4 .

Ifg(x)=int_0^x(|sint|+|cost|)dt ,t h e ng(x+(pin)/2) is equal to, where n in N , g(x)+g(pi) (b) g(x)+g((npi)/(n2)) g(x)+g(pi/2) (d) none of these

CENGAGE-DEFINITE INTEGRATION -JEE Advanced Previous Year
  1. If g(x)=int(0)^(x)cos^(4)t dt, then prove that g(x+pi)=g(x)+g(pi).

    Text Solution

    |

  2. Solve: (x+2)^3=2x(x^2-1)

    Text Solution

    |

  3. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. Find the roots of the following quadratic equations x^2-2x-3

    Text Solution

    |

  6. Let f:[-1,2]vec[0,oo) be a continuous function such that f(x)=f(1-x)fo...

    Text Solution

    |

  7. Let f:[1/2,1]vecR (the set of all real numbers) be a positive, non-con...

    Text Solution

    |

  8. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  9. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  10. Find A × B, A × A and B × A : A = {1, 2, 3} and B = {1, −4}.

    Text Solution

    |

  11. Evaluate: int(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

    Text Solution

    |

  12. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Let S be the area of the region enclosed by y=e^-x^2,y=0,x=0,a n dx=1....

    Text Solution

    |

  15. For a in R (the set of all real numbers), a!=-1), (lim)(nvecoo)((1^a...

    Text Solution

    |

  16. Let f be a continuous function on [a ,b]dot Prove that there exists a ...

    Text Solution

    |

  17. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^-(t+(1...

    Text Solution

    |

  18. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  19. Given A = {2,4,5 }, B = {2, 5}, C = {3, 4} and D = {1, 3, 5}, check if...

    Text Solution

    |

  20. ("lim")(xvecoo)((n^2)/(n^2))^(n(n-1)i se q u a lto e (b) e^2 (c) e^(...

    Text Solution

    |

  21. Let f: RvecR be a continuous function which satisfies f(x)= int0^xf(t...

    Text Solution

    |