Home
Class 12
MATHS
Let f:R -(0,oo) be a real valued funct...

Let `f:R -(0,oo) ` be a real valued function satisfying `int_0^x tf(x-t) dt =e^(2x)-1` then `f(x)` is

Text Solution

Verified by Experts

`int_(0)^(x) tf(x-t)dt=e^(2x)-1`
`impliesint_(0)^(x)(x-t)f(t)dt=e^(2x)-1`
`impliesx int_(0)^(x)f(t)dt-int_(0)^(x)tf(t)dt=e^(2x)-1`
Differentiating both sides w.r.t `x`, we get
`xf(x)+int_(0)^(x)f(t)dt-xf(x)=2e^(2x)`
`impliesint_(0)^(x)f(t)dt=2e^(2x)`
`impliesf(x)=4e^(2x)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, x int_0^x (1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

Let f(x) be a derivable function satisfying f(x)=int_0^x e^tsin(x-t)dta n dg(x)=f^(x)-f(x) Then the possible integers in the range of g(x) is_______

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

Let f be a real-valued function satisfying f(x)+f(x+4)=f(x+2)+f(x+6) Prove that int_x^(x+8)f(t)dt is constant function.

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for