Home
Class 12
MATHS
Find the value of int(0)^(4)[x]dx, where...

Find the value of `int_(0)^(4)[x]dx`, where `[.]` represents the gretest integer function.

Text Solution

Verified by Experts

The correct Answer is:
6

Graph of `y=[x]` for `0ltxlt4` is as shown in the following figure.

From the graph `int_(0)^(4)[x]dx=0` (for `0ltxlt1)`
`+(1xx1)` (for `1ltxlt2`)
`+(1xx2)` (for `2ltxlt3`)
`+(1xx3)` (for `3ltxlt4`)
`=0+1+2+3`
`=6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

Evaluate int_(0)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(2)^(5) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(2)^(5)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x+[x])dx ,where [.] denotes the greatest integer function.