Home
Class 12
MATHS
If f(x)={1-|x|,|x|lt=1 0,|x|>1'a n dg(x)...

If `f(x)={1-|x|,|x|lt=1 0,|x|>1'a n dg(x)=f(x-1)+f(x+1),` find the value of `int_(-3)^3g(x)dxdot`

Text Solution

Verified by Experts

The correct Answer is:
2


Graph of `y=f(x-1)`
`int_(-3)^(3)g(x)dx=int_(-3)^(3)f(x-1)dx+int_(-3)^(3)f(x-1)dx`
`=` Area of triangle in the graph `y=f(x-1)`
`+` Area of triangle in the graph `y=f(x+1)`
`=2 1/2 (2)(1)=2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_0^1 2x^3-3x^2-x+1 3dxdot

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dxdot

If (x^2+x−2)/(x+3) 1) f(x) then find the value of lim_(x->1) f(x)

If f(x)=min(|x|,1-|x|,1/4)AAx in R , then find the value of int_(-1)^1f(x)dxdot

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

Let f(x)={x+1,x >0 2-x ,xlt=0 and g(x)={x+3,x 0)g(f(x)).

Iff(x)=e^(g(x))a n dg(x)=int_2^x(tdt)/(1+t^4), then find the value of f^(prime)(2)

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of f(3) is

L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int_(1/4)^(3/4)f(f(x))dx)^(-1) os____