Home
Class 12
MATHS
Show that : int0^1(logx)/((1+x))dx=-int0...

Show that : `int_0^1(logx)/((1+x))dx=-int_0^1(log(1+x))/x dx`

Text Solution

Verified by Experts

The correct Answer is:
NA

Let `I=int_(0)^(1)(logx)/((1+x))dx`
`=[log x log (1+x)]_(0)^(1)-int_(0)^(1)(log(1+x))/x dx`
`=0-int_(0)^(1)(log(1+x))/x dx`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Show that int_(0)^(1)log((1-x)/(x))dx=0

Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

Prove that int_0^1tan^(-1)(1/(1-x+x^2))dx=2int_0^1tan^(-1)x dxdot Hence or otherwise, evaluate the integral int_0^1tan^(-1)(1-x+x^2)dx

int(1)/(x(logx)log(logx))dx=

int(1)/(x)ln((x)/(e^(x)))dx=

Show that int_(0)^(1)(e^(x))/(1+e^(2x))dx=tan^(-1)(e)-pi/(4)

Evaluate int_0^1(e^x)/(1+e^(2x)) dx

Evaluate int_(1)^(e)(1+logx)/(x)dx

Evaluate: int(log(1+1/x))/(x(1+x))dx