Home
Class 12
MATHS
Evaluate: ("lim")(nvecoo)(1/(sqrt(4n^2-1...

Evaluate: `("lim")_(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/6`

Given limit
`=lim_(nto oo) 1/n[n/(sqrt(4n^(2)-1))+n/(sqrt(4n^(2)-2^(2)))+…………+n/(sqrt(4n^(2)-n^(2)))]`
`=lim_(n to oo) 1/n[1/(sqrt(4-(1/n)^(2)))+1/(sqrt(4-(2/n)^(2)))+……………1/(sqrt(4-(n/n)^(2)))]`
`=int_(0)^(1)(dx)/(sqrt(4-x^(2)))=|sin^(-1)x/2|_(0)^(1)="sin"^(-1)1/2-0=(pi)/6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvecoo)(sqrt(3x^2-1)-sqrt(2x^2-1))/(4x+3)

Evaluate ("lim")_(nvecoo)sum_(k=1)^nk/(n^2+k^2)

Evaluate: ("lim")_(xvecpi/4)(sqrt(2)cosx-1)/(cotx-1)

Evaluate: ("lim")_(nvecoo)(sumr=1nsqrt(r)sumr=1n1/(sqrt(r)))/(sumr=1n r)

The value of ("lim")_(nvecoo)sum_(r=1)^(4n)(sqrt(n))/(sqrt(r)(3sqrt(r)+sqrt(n))^2) is equal to 1/(35) (b) 1/4 (c) 1/(10) (d) 1/5

The value of ("lim")_(xvecoo)[3sqrt((n+1)^2) -3sqrt((n-1)^2 ))] is_____

Evaluate: ("lim")_(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/nsec^2 1]

Evaluate lim_(xto0)(sqrt(x^2+1)-1)/(sqrt(x^2+16)-4)

lim_(xto0)(sqrt(x^(2)+1)-1)/(sqrt(x^(2)+16)-4)

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .