Home
Class 12
MATHS
Evaluate the following limit: lim(nto ...

Evaluate the following limit:
`lim_(nto oo)(sum_(r=1)^(n) sqrt(r)sum_(r=1)^(h)1/(sqrt(r)))/(sum_(r=1)^(n)r)`

Text Solution

Verified by Experts

The correct Answer is:
`8/3`

`lim_(n to oo) (sum_(r=1)^(n)sqrt(r) sum_(r=1)^(n)1/(sqrt(4)))/(sum_(r=1)^(n)r)`
`:.` Limit `=lim_(nto oo) (1/n sum_(r=1)^(n)sqrt(4/n)(1/nsum_(r=1)^(n)sqrt(n/r)))/(1/n sum_(r=1)^(n)r/n)`
`=(int_(0)^(1)sqrt(x)dxint_(0)^(1)(dx)/(sqrt(x)))/(int_(0)^(1)x dx) =8/3`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.3|4 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.1|4 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(nvecoo)(sumr=1nsqrt(r)sumr=1n1/(sqrt(r)))/(sumr=1n r)

Find the sum Sigma_(r=1)^(oo) (r)/(r^4+1/4)

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

Find the sum Sigma_(r=1)^(oo) (r-2)/((r+2)(r+3)(r+4))

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

lim_(x->oo)sum_(r=1)^n (x+r)^2010/((x^1006+1)(2x^1004+1))=

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

lim_(xrarroo) (sum_(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .