`IfI_1=int_0^1 2^x^3 dx,I_2=int_0^1 2^x^2 dx ,I_3=int_1^2 2^x^2dx ,I_4=int_1^2 2^x^3dx ,`
then which of the following is/are ture?
`I_1> I_2`
(b) `I_2> I_2`
`I_3> I_4`
(d) `I_3
A
`I_(1)gtI_(2)`
B
`I_(2)gtI_(1)`
C
`I_(3)gtI_(4)`
D
`I_(3)ltI_(4)`
Text Solution
Verified by Experts
The correct Answer is:
A, D
For `0lt xlt 1, x^(3)gtx^(3)` or `2^(x^(2))gt2^(x^(3))` or `int_(0)^(1)2^(x^(2))dxgt int_(0)^(1)2^(x^(3))dx` Hence `I_(1)gtI_(2)` Also for `1ltxlt2, x^(2)ltx^(3)` or `2^(x^(2))lt2^(x^(3))` or `int_(1)^(2)2^(x^(2))dxlt int_(1)^(2)2^(x^(3))dx` or `I_(3)ltI_(4)`
Topper's Solved these Questions
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.4|10 Videos
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.5|11 Videos
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.2|17 Videos
CURVE TRACING
CENGAGE|Exercise Exercise|24 Videos
DETERMINANT
CENGAGE|Exercise Multiple Correct Answer|5 Videos
Similar Questions
Explore conceptually related problems
IfI_1=int_0^1 2^(x^2) ,I_2=int_0^1 2^(x^3)dx ,I_3=int_1^2 2^(x^2)dx ,I_4=int_1^2 2^(x^3)dx , then which of the following is/are true? I_1> I_2 (b) I_2> I_1 I_3> I_4 (d) I_3 lt I_4
IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these
IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.
Consider I_1=int_0^(pi/4)e^x^2dx ,I_2=int_0^(pi/4)e^x dx ,I_3=int_0^(pi/4)e^x^2cosxdx ,I_4=int_0^(pi/4)e^x^2sinxdxdot STATEMENT 1 : I_2> I_1> I_3> I_4 STATEMENT 2 : For x in (0,1),x > x^2a n dsinx >cosxdot
If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2
I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2) sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0
Let I=int_1^2 (dx)/sqrt(2x^3-9x^2+12x+4) then
I=int(dx)/((2a x-x^2)
IfI_n=int_0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following statements hold good? 2nI_(n+1)=2^(-n)+(2n-1)I_n I_2=pi/8+1/4 (c) I_2=pi/8-1/4 I_3=(3pi)/(32)+1/4