Home
Class 12
MATHS
IfII=int0^(pi//2)cos(sinx)dx ,I2=int0^(p...

`IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx ,` then find the order in which the values `I_1,I_2,I_3,` exist.

Text Solution

Verified by Experts

The correct Answer is:
`I_(1)gtI_(3)gtI_(2)`

We know that `cosx` is decreasing function in `(0,pi//2)`.
Also `xgtsinx` for `xepsilon(0,pi//2)`
Thus, `cosx lt cos (sinx)`
Further, `xgtsinx` and `cosxepsilon(0,1)` for `xepsilon(0,pi//2)`
`:.cosxgtsin(cosx)`
Thus, `sin (cosx)ltcosxltcos(sinx)`
Hence `int_(0)^(pi//2)sin(cosx)dxlt int_(0)^(pi//2)cosxdx lt int_(0)^(pi//2) cos(sinx)dx`
`impliesI_(2)ltI_(3)ltI_(1)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.4|10 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.2|17 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cosx)/(1+sinx)dx=

Evaluate: int_0^(pi/2)xcotx dx

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

Evaluate : int_0^(pi/2) (sinx+cosx) dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Evaluate: int_0^(pi/2)|sinx-cosx|dx

L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)(("sin"(sinx))/(sinx))dx ,I_3=int_(pi/6)^(pi/3)(sin(tanx)/(tanx))dx Then arrange in the decreasing order in which values I_1,I_2,I_3 lie.

I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2) sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0