`IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx ,`
then find the order in which the values `I_1,I_2,I_3,`
exist.
Text Solution
Verified by Experts
The correct Answer is:
`I_(1)gtI_(3)gtI_(2)`
We know that `cosx` is decreasing function in `(0,pi//2)`. Also `xgtsinx` for `xepsilon(0,pi//2)` Thus, `cosx lt cos (sinx)` Further, `xgtsinx` and `cosxepsilon(0,1)` for `xepsilon(0,pi//2)` `:.cosxgtsin(cosx)` Thus, `sin (cosx)ltcosxltcos(sinx)` Hence `int_(0)^(pi//2)sin(cosx)dxlt int_(0)^(pi//2)cosxdx lt int_(0)^(pi//2) cos(sinx)dx` `impliesI_(2)ltI_(3)ltI_(1)`
Topper's Solved these Questions
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.4|10 Videos
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.5|11 Videos
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.2|17 Videos
CURVE TRACING
CENGAGE|Exercise Exercise|24 Videos
DETERMINANT
CENGAGE|Exercise Multiple Correct Answer|5 Videos
Similar Questions
Explore conceptually related problems
int_(0)^(pi)(cosx)/(1+sinx)dx=
Evaluate: int_0^(pi/2)xcotx dx
u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx
IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these
If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2
Evaluate : int_0^(pi/2) (sinx+cosx) dx
int _0^(pi/2) (sin^2x)/(sinx+cosx)dx
Evaluate: int_0^(pi/2)|sinx-cosx|dx
L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)(("sin"(sinx))/(sinx))dx ,I_3=int_(pi/6)^(pi/3)(sin(tanx)/(tanx))dx Then arrange in the decreasing order in which values I_1,I_2,I_3 lie.
I_1=int_0^(pi/2)(sinx-cosx)/(1+sinxcosx)dx ,I_2=int_0^(2pi)cos^6xdx ,I_3=int_(pi/2)^(pi/2) sin^3xdx ,I_4=int_0^1 1n(1/x-1)dxdotT h e n I_2=I_3=I_4=0,I_1!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0 I_1=I_2=I_3=0,I_4!=0