If
`f(x)=x+7` and `g(x)=x−7,xϵR`, then find `fog(7).`
Text Solution
Verified by Experts
The correct Answer is:
NA
Since `0ltx^(3)ltx^(2)`, we have (for `0ltxlt1`) `x^(2)lt x^(2)+x^(3)lt2x^(2)` or `-2x^(2)lt-x^(2)-x^(3)lt-x^(2)` or `4-2x^(2)lt4-x^(2)-x^(3)lt4-x^(2)` or `sqrt(4-2x^(2))ltsqrt(4-x^(2)-x^(3))ltsqrt(4-x^(2))` or `1/(sqrt(4-x^(2)))lt 1/(sqrt(4-x^(2)-x^(3)))lt 1/(sqrt(4-2x^(2)))` or `int_(0)^(1)1/(sqrt(4-x^(2)))dx lt int_(0)^(1)1/(sqrt(4-x^(2)-x^(3)))dx lt int_(0)^(1)1/(sqrt(4-2x^(2)))dx` or `sin^(-1)(x/2)]_(0)^(1)lt int_(0)^(1) (dx)/(sqrt(4-x^(2)-x^(3))) lt 1/(sqrt(2))"sin"^(-1)x/(sqrt(2))]_(0)^(1)` or `(pi)/6 lt int_(0)^(1)(dx)/(sqrt(4-x^(2)-x^(3)))lt (pi)/(4sqrt(2))`
Topper's Solved these Questions
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.4|10 Videos
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.5|11 Videos
DEFINITE INTEGRATION
CENGAGE|Exercise Exercise 8.2|17 Videos
CURVE TRACING
CENGAGE|Exercise Exercise|24 Videos
DETERMINANT
CENGAGE|Exercise Multiple Correct Answer|5 Videos
Similar Questions
Explore conceptually related problems
If f(x)=2x+1 and g(x)=x/2 , then find (fog(x))-(gof(x))
If f(x)=3x-2 and g(x)=2x+a and if fog=gof , then find the value of a
If f(x)=3x-2, g(x)=2x+k and if fog=gof, then find the value of k.
(a) Let f,g : R to R be defined as f(x) =2x -|x| and g(x) =2x + |x| . Find fog. (b) Prove that lim_(theta to 0) (sin theta)/theta =1
If f(x)=3+x and g(x)=x-4 , show that fog(x)=gof(x)
If f(x) = 2x^(3)+7x-5 and g(x) = f^(-1)(x) , then reciprocal of g^(')(4) is equal to
Find gof and fog, if f: R to R and g : R to R are given by f (x) = cos x and g (x) = 3x ^(2). Show that gof ne fog.
If f:R^+→R^+ and g:R^+→R^+ , defined as f(x)=x^2,g(x)= sqrtx , then find gof and fog whether are they equivalent?
If f(x) =x^(2) -7,g (x) =x-4 find a if g^(@) f (a)= 5