Home
Class 12
MATHS
Find the value of int(0)^(2pi)1/(1+tan^(...

Find the value of `int_(0)^(2pi)1/(1+tan^(4)x)dx`

Text Solution

Verified by Experts

The correct Answer is:
`pi`

`I=int_(0)^(2pi)1/(1+tan^(4)x)dx=2int_(0)^(pi)(dx)/(1+tan^(4)x)`
`=4int_(0)^(pi//2) (dx)/(1+tan^(4)x)`……………….1
`=4int_(0)^(pi//2)(dx)/(1+cot^(4)x)`…………….2
Adding 1 and 2 we get
`2I=4int_(0)^(pi//2)dx=4,(pi)/2`
`impliesI,pi`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Find the value of int_(-1)^1d/(dx)(tan^(-1)1/x)dx

The value of int_(0)^(pi//2)(dx)/(1+tan^(3)x) is

Knowledge Check

  • The value of int_(0)^(pi) sin^(4) x dx is

    A
    `(3pi)/(10)`
    B
    `(3pi)/(8)`
    C
    `(3pi)/( 4)`
    D
    `(3pi)/( 2)`
  • The value of int_(0)^((pi)/(2)) (dx)/( 1+ tan x) is

    A
    `pi`
    B
    `(pi)/( 2)`
    C
    `(pi)/(4)`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Find the value of int_(0)^(100pi)sin^(-1)(sin x)dx .

    Prove that int_(0)^(1)log((x)/(x-1))dx=int_(0)^(1)log((x-1)/(x))dx . Find the value of int_(0)^(1)log((x)/(x-1))dx

    Find the value of int_(0)^(1)root(3)(2x(3)-3x^(2)-x+1)dx .

    Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

    Find the value of int_0^1{(sin^(-1)x)//x}dx

    The value of int_(0)^(1)(tan^(-1)((x)/(x+1)))/(0tan^(-1)((1+2x-2x^(2))/(2)))dx is