Home
Class 12
MATHS
By using the properties of definite inte...

By using the properties of definite integrals, evaluate the integrals
`int_(0)^(pi)log(1+cosx)dx`

Text Solution

Verified by Experts

The correct Answer is:
`-pilog_(e)2`

`I=int_(0)^(pi)log(1+cosx)dx=int_(0)^(pi)log(2"cos"^(2)x/2)dx`
`=int_(0)^(pi)(log2+2"log cos"x/2)dx=pi log 2+2int_(0)^(pi)"log cos"x/2 dx`
`=pi log 2+2xx2int_(0)^(pi//2) log cos t dt, ` where `t=x/2` and `dx=2dt`
`pi log 2=4xx(-(pi)/2 log 2)`
`=-pi log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.8|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.5|11 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi)(xdx)/(1+sinx)

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi)(xdx)/(1+sinx)

By using the properties of definite integrals, evaluate the integrals int_(0)^(2pi)cos^(5)xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)cos^(2)xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))cos^(2)xdx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(4))log(1+tanx)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^(4)abs(x-1)dx

By using the properties of definite integrals, evaluate the integrals int_(0)^((pi)/(2))(cos^(6)xdx)/(sin^(6)x+cos^(6)x)

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/2)(cos^(5)xdx)/(sin^(5)x+cos^(5)x)