Home
Class 12
MATHS
Show that int0^(npi+v)|sinx|dx=2n+1-cosv...

Show that `int_0^(npi+v)|sinx|dx=2n+1-cosv ,` where `n` is a positive integer and `,lt=v

Text Solution

Verified by Experts

The correct Answer is:
`2n+1-cosv`

Let `I=int_(0)^(npi+v)|sinx|dx`
`=int_(0)^(v)|sinx|dx+int_(v)^(npi+v)|sinx|dx`
`=int_(0)^(v)sinx dx+n int_(0)^(pi) |sinx+dx` [ `:'|sinx|` has period `pi`]
`=(-cosx)_(0)^(v)+n(-cosx)_(0)^(pi)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.9|9 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.7|6 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Prove that int_(0)^(infty)x^n e^(-x) dx=n!., Where n is a positive integer.

Evaluate: int_(0)^(2pi)x^(2) sinnxdx, where n is positive integer.

Evaluate int_(0)^(pi)x^(2) cosnxdx, where n is positive integer.

Evaluate int_(0)^(infty)(x^(n))/(n^(x)) dx, where n is a positive integer.

Prove that (a) (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer. (b) (1+isqrt(3))^n+(1-isqrt(3)^n=2^(n+1)cos((npi)/3) , where n is a positive integer

If U_(n)=int_(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of zero, then The value of U_(n) is