Home
Class 12
MATHS
IfIn=int0^(pi/2)sin^n xdx ,t h e ns howt...

`IfI_n=int_0^(pi/2)sin^n xdx ,t h e ns howt h a tI_n=((n-1)/n)I_(n-2)` Hence, Prove that `I_n=f(x)={((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))ddot(1/2)pi/2ifni se v e n((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))(2/3)1ifni sod d`

Text Solution

Verified by Experts

The correct Answer is:
`pi^(5)`

`I_(m)=int_(0)^(pi)x^(m) sin x dx`
`=[-x^(m)cosx]_(0)^(pi)+n int_(0)^(pi)x^(n-1)cos x dx`
`=pi^(n)+n[x^(n-1)sinx ]_(0)^(pi)-n(n-1)int_(0)^(pi)x^(n-2)sin x dx`
`implies I_(m)=pi^(n)+n.0-n(n-1)I_(n-2)`
Put `n=5`
`I_(5)=pi^(5)-20I_(3)`
`I_(5)+20I_(3)=pi^(5)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11))i se q u a lto___

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .