Home
Class 12
MATHS
IfIn=int0^1x^n(tan^(-1)x)dx ,t h e np ro...

`IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t` `(n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2`

Text Solution

Verified by Experts

The correct Answer is:
NA

`I_(n)=int_(0)^(1) x^(n)(tan^(-1)x)dx=int_(0)^(1)x^(n-1)(xtan^(-1)x)dx`
`=[x^(n-1)((x^(2))/2"tan"^(-1)x-(x^(2))/2+(tan^(-1)x)/2)]_(0)^(1)`
`=(n-1)int_(0)^(1)x^(n-2)((x^(2))/2"tan"^(-1)x-x/2+(tan^(-1)x)/2)dx`
`=(pi)/4-1/2-((n-1))/2 I_(n)+((n-1))/2int_(0)^(1)x^(n-1)dx-1/2(n-1)I_(n-2)`
or `((n+1))/2I_(n)=(pi)/4-1/2+1/2 1/(2n)-1/2(n-1)I_(n-2)`
or `(n+1)I_(n)+(n-1)I_(n-2)=-1/n+(pi)/2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|113 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 8.10|7 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Given I_m=int_1^e(logx)^mdx ,t h e np rov et h a t(I_m)/(1-m)+m I_(m-2)=e

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

Iff(x)=int_1^x(logt)/(1+t+t^2)dxAAxlt=1,t h e np rov et h a tf(x)f(1/x)dot

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

IfI_n=int_0^(pi/4)tan^n xdx ,(n >1 and is an integer), then I_n+I_(n-2)=1/(n+1) I_n+I_(n-2)=1/(n-1) I_2+I_4,I_4+I_6, ,a r einHdotPdot 1/(2(n+1))

If I_n=int( lnx)^n dx then I_n+nI_(n-1)

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

If I_(n)=int_(0)^(pi//4) tan^(n)x dx, (ngt1 is an integer ), then

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11))i se q u a lto___