Home
Class 12
MATHS
y=f(x) satisfies the relation int(2)^(x)...

`y=f(x)` satisfies the relation `int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
The range of `y=f(x)` is

A

`[0,oo)`

B

`R`

C

`(-oo,0]`

D

`[-1/2,1/2]`

Text Solution

Verified by Experts

The correct Answer is:
D

`int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
Differentiating w.r.t `x` we get

`f(x)=x+(-x^(2)f(x))`
or `f(x)[1+x^(2)]=x`
Let `y=f(x)=x/(1+x^(2))`
or `yx^(2)-x+y=0`
Since `x` is real `Dge0`
or `1-4y^(2)ge0`
or `y epsilon [-1/2,1/2]`
Also `f(x)` is an odd funtion. Hence `int_(-2)^(2)f(x)dx=0`
`f'(x)=(1+x^(2)-2x^(2))/(1+x^(2))-(1-x^(2))/(1+x^(2))ge0`
or `x^(2)-1le0`
or `x epsilon[-1,1]`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Prove that int_0^x e^(x t)e^-t^2dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  2. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  3. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  4. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  5. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  6. Let f(x) be a differentiable function such that f(x)=x^2 +int0^x e^-t ...

    Text Solution

    |

  7. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  8. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  9. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  10. Check whether the equation is quadratic equation: (x-1) (x-5)=(x-1)(x-...

    Text Solution

    |

  11. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  12. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  13. Evaluate int(0)^(2)(x^2+x+2)dx

    Text Solution

    |

  14. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  15. Evaluate int(2)^(3)(x^2+1)dx

    Text Solution

    |

  16. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  17. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  18. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  19. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  20. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |