Home
Class 12
MATHS
Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int...

Let `u=int_0^oo (dx)/(x^4+7x^2+1` and `v=int_0^oo (x^2dx)/(x^4+7x^2+1)` then

A

`v>u`

B

`6v=pi`

C

`3u+2v=(5pi)/6`

D

`u+v=pi/3`

Text Solution

Verified by Experts

The correct Answer is:
B

`u=int_(0)^(oo) (dx)/(x^(4)+7x^(2)+1)` and `v=int_(0)^(oo) (x^(2)dx)/(x^(4)+7x^(2)+1)`
`:. u+v=int_(0)^(oo) (1+x^(2))/(x^(4)+7x^(2)+1)dx`
`=int_(0)^(oo) (1/(x^(2))+1)/((x-1/x)^(2)+9)dx`
`=1/3["tan"^(-1)((x-1/x)/3)]_(0)^(oo)`
`=1/3[pi//2+pi//2]=pi//3`
`:.u+v=pi//3`
Now `u-v=int_(0)^(oo) (1-x^(2))/(x^(4)+7x^(2)+1)dx`
Let `x=1/t` or `x=-(dt)/(t^(2))`
`:.u-v=int_(oo)^(0)(1-1/(t^(2)))/(1/(t^(4))+7/(t^(2))+1)(1-1/(t^(2)))dt`
`=-int_(0)^(oo)(1-t^(2))/(t^(4)+7t^(2)+1) dt`
`=-(u-v)`
`:. u-v=0`
From 1 and 2, we get `u=v=pi//6`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_0^oo (dx)/(1+x^4) is (a) same as that of int_0^oo (x^2+1dx)/(1+x) (b) (pi)/(2sqrt2) (c) same as that of int_0^oo (x^2+1dx)/(1+x^4) (d) pi/sqrt2

Let I=int_1^2 (dx)/sqrt(2x^3-9x^2+12x+4) then

int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

int_(0)^(oo) e^(-mx) x^(7) dx is

int_(0)^(1)(dx)/(sqrt(4-x^2))= .

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)/x dx

L e tA=int_0^oo(logx)/(1+x^3)dx Then find the value of int_0^oo(xlogx)/(1+x^3)dx in terms of A

Evaluate int(2x)/(x^(4)+x^(2)+1)dx

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  2. Evaluate int(0)^(2)(x^2+x+2)dx

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluate int(2)^(3)(x^2+1)dx

    Text Solution

    |

  5. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int0^1(dt)/(1+|x-t|),t h e nf^(prime)(1/2)i se q u a lto 0 (b...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following ...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Evaluate int(0)^(2)(2x^2+x+1)dx

    Text Solution

    |

  19. Evaluate int(0)^(4)(x^2+2x+8)dx

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |