Home
Class 12
MATHS
If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx ...

If `U_(n)=int_(0)^(pi)(1-cosnx)/(1-cosx)dx` where `n` is positive integer of zero, then
The value of `U_(n)` is

A

`pi//2`

B

`pi`

C

`npi//2`

D

`npi`

Text Solution

Verified by Experts

The correct Answer is:
D

`U_(n+2)-U_(n+1)=int_(0)^(pi)((1-cos(n+2)x)-(1-cos(n+1)x))/(1-cosx)dx`
`=int_(0)^(pi)(cos(n+1)x-cos(n+2)x)/(1-cosx)`
`=int_(0)^(x)(2sin(n+3/2)x . "sin"x/2)/(2sin^(2)x//2) dx`
`implies U_(n+2)-U_(n+1)=int_(0)^(pi)("sin"(n+3/2)x)/("sin"x/2)dx`.................1
`impliesU_(n+1)-U_(n)=int_(0)^(pi)("sin"(n+1/2)x)/("sin"x/2)dx`.............2
From 1 and 2 we get
`(U_(n+2)-U_(n-1))-(U_(n+1)-U_(n))`
`=int_(0)^(pi)(sin(n+3/2)x-sin(n+1/2)x)/("sin"x/2)dx`
`implies U_(n+2)+U_(n)-2U_(n+1)`
`=int(2cos(n+1)x.sinx//2)/(sinx//2) dx`
`=2int_(0)^(pi)cos(n+1)x dx`
`=2((sin(n+1)x)/(n+1))-(0)^(pi)=0`
`impliesU_(n+2)+U_(n)=2U_(n+1)`
`implies U_(n),U_(n+1),U_(n+2)` are in A.P.
`U_(0)=int_(0)^(pi)(1-1)/(1-cosx)dx=0`
`U_(1)=int_(0)^(pi)(1-cosx)/(1-cosx) dx=pi`
`U_(1)=U_(0)=pi` (common difference)
`:.U_(n)=U_(0)+npi=npi`
Now, `I_(n)=int_(0)^(pi//2) (sin^(2) n theta)/(sin^(2) theta) d theta`
`=int_(0)^(pi//2) (sin^(2) n theta)/(sin^(2)theta) d theta`
`=int_(0)^(pi//2) (1-cos2 n theta)/(1-cos 2theta) d theta=1/2 int_(0)^(pi)(1-cosn x)/(1-cosx) dx`
`impliesI_(n)=1/2npi`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Matrix)|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(cosx)/(1+sinx)dx=

If U_n=int_0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zero, then show that U_(n+2)+U_n=2U_(n+1)dot Hence, deduce that int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot

Evaluate int_(0)^(pi)x^(2) cosnxdx, where n is positive integer.

Evaluate: int_(0)^(2pi)x^(2) sinnxdx, where n is positive integer.

Evaluate int_(0)^(infty)(x^(n))/(n^(x)) dx, where n is a positive integer.

Evaluate int_(0)^(pi)(cosx/(1+sinx))dx

Prove that int_(0)^(infty)x^n e^(-x) dx=n!., Where n is a positive integer.

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

CENGAGE-DEFINITE INTEGRATION -Exercise (Comprehension)
  1. If f(x) is a function satisfying f(x+a)+f(x)=0 for all x in R and pos...

    Text Solution

    |

  2. Evaluate int(0)^(2)(x^2+x+2)dx

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluate int(2)^(3)(x^2+1)dx

    Text Solution

    |

  5. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int0^1(dt)/(1+|x-t|),t h e nf^(prime)(1/2)i se q u a lto 0 (b...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x epsilonR Which of the following ...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Evaluate int(0)^(2)(2x^2+x+1)dx

    Text Solution

    |

  19. Evaluate int(0)^(4)(x^2+2x+8)dx

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |