Home
Class 12
MATHS
int(0)^(pi)[cotx]dx, where [.] denotes t...

`int_(0)^(pi)[cotx]dx,` where [.] denotes the greatest integer function, is equal to

A

`(pi)/2`

B

`1`

C

`-1`

D

`-(pi)/2`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `I=int_(0)^(pi)[cotx]dx` …………..i
`=int_(0)^(pi)[cot(pi-x)]dx=int_(0)^(pi)[-cotx]dx`………….ii
Adding i and ii we get
`2I=int_(0)^(pi)[cotx] dx+int_(0)^(pi)[-cotx]dx=int_(0)^(pi)(-1)dx`
[since `[x]+[-x]` is equal to `-1` if `x !inZ` and is equal to 0 if `x epsilonZ`]
`=[-x]_(0)^(pi)=-pi`
`:.I=-(pi)/2`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3) [x]dx ,where [.] denotes the greatest integer function.

Knowledge Check

  • int_(0)^(1)[2x]dx where [] is the greatest integer function :

    A
    1
    B
    `(1)/(4)`
    C
    `(1)/(3)`
    D
    `(1)/(2)`.
  • Similar Questions

    Explore conceptually related problems

    ("lim")_(xvec0)[(sin(sgn(x)))/((sgn(x)))], where [dot] denotes the greatest integer function, is equal to (a)0 (b) 1 (c) -1 (d) does not exist

    Prove that int_(-pi/2)^(2pi)[cot^(-1)x]dx ,where [dot] denotes the greatest integer function.

    The integral int_0^(1. 5)[x^2]dx ,w h e r e[dot] denotoes the greatest integer function, equals ...........

    Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function, is

    Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

    Evaluate int_(0)^(1.5) x[x^2] dx , where [.] denotes the greatest integer function

    Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.