Home
Class 12
MATHS
The value of int(0)^(1)(8log(1+x))/(1+x^...

The value of `int_(0)^(1)(8log(1+x))/(1+x^(2))dx` is

A

`log 2`

B

`pi log 2`

C

`(pi)/8 log 2`

D

`(pi)/2 log 2`

Text Solution

Verified by Experts

The correct Answer is:
B

We have
`I=int_(0)^(1)(8log(1+x))/(1+x^(2))dx`
Put `x=tan theta`
`impliesI=int_(0)^((pi)/4) 8 . (log (1+tan theta))/(sec^(2) theta) sec^(2) theta d theta`
`=8 int_(0)^(pi//4) log (1+tan theta) d theta`
`=8 int_(0)^(pi//4) log (1+tan (pi//4-theta) d theta`
`=8int_(0)^(pi//4) log(1+(1-tan theta)/(1+tan theta)) d theta`
`=8int_(0)^(pi//4) log (2/(1+ tan theta)) d theta`
`=8(log2). (pi)/4-I`
`implies2I=2pi log 2`
`implies I=pi log 2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1) (sin^(-1) x ) ^(2) dx is

The value of int_(0)^(1)xcos^(-1)((1-x^2)/(1+x^2)) dx (x>0) is equal to ___________.

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int_0^1(x^4(1-x)^4)/(1+x^2)\ dx is

Evaluate int_(1)^(2)(log(x+1))/(x+1)dx

Evaluate int_(0)^(1)(x^(2))/(1+x^(2))dx .

The value of int_(0)^(1) x ( 1-x ) ^(99) dx is

The value of int_0^oo(x dx)/((1+x)(1+x^2)) is equal to