Home
Class 12
MATHS
For x epsilon(0,(5pi)/2), definite f(x)...

For `x epsilon(0,(5pi)/2)`, definite `f(x)=int_(0)^(x)sqrt(t) sin t dt`. Then `f` has

A

local maximum at `pi` and local minima at `2pi`

B

local maximum at `pi` and `2pi`

C

local minimum at `pi` and `2pi`

D

local minimum at `pi` and local maximum at `2pi

Text Solution

Verified by Experts

The correct Answer is:
A

We have
`f(x)=int_(0)^(x)sqrt(t)sin t dt`
`impliesf'(x)=sqrt(x)sinx`
For maximum of minimum value of `f(x), f'(x)=0`
`impliesx=2npi,n epsilonZ`
Sign scheme of `f'(x)` for `xepsilon(0,(5pi)/2)` is

`f'(x)` changes its sign from +ve to -ve in the neighborhood of `pi` and from -to + in the neighborhood of `2pi`.
Hence `f(x)` has local maximum at `x=pi` and local minima at `x=2pi`.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x) = int_(0)^(x) t cos t dt , then (df)/(dx)

If f(x)=int_(0)^(x)t sintdt , then f'(x)= . . . . . .

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

Let f(x)=1/x^2 int_0^x (4t^2-2f'(t))dt then find f'(4)

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to