Home
Class 12
MATHS
Statement I: The value of the integral i...

Statement I: The value of the integral `int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))` is equal to `(pi)/6`.
Statement II: `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

Statement I is true, statement II is true, statement II is a correct explanation for statement I

B

Statement I is true, statement II is true, statement II is a not a correct explanation for statement I

C

Statement I is true, statement II is false

D

Statement I is false, statement II is true

Text Solution

Verified by Experts

The correct Answer is:
D

`I=int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))`………..i
`I=int_(pi//6)^(pi//3) (dx)/(1+sqrt(cotx))=int_(pi//6)^(pi//3)(sqrt(tanx)dx)/(sqrt(tanx)+1)`………..ii
Adding i and ii
`implies2I=int_(pi//6)^(pi//3) 1 dximplies2I=(pi)/3-(pi)/6`
`implies2I=(pi)/6impliesI=(pi)/12`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate pi_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate: int_(pi//6)^(pi//3)(dx)/(1+sqrtcotx)

int_(0)^((pi)/(2))(dx)/(1+sqrt(tanx)) is :

The Integral int_(pi/4)^((3pi)/4)(dx)/(1+cosx) is equal to:

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

The value of difinite integral int_(0)^(1) (dx)/(sqrt((x+1)^(3)(3x+1))) equals

Evaluate int_0^((pi)/(2))(dx)/(1+sqrt(tanx))

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is