Home
Class 12
MATHS
The integral int(2)(4)(logx^(2))/(logx^(...

The integral `int_(2)(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))) dx` is equal to

A

`2`

B

`4`

C

`1`

D

`6`

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2))dx`
`I=2/2 int_(2)^(4)(log|x|)/(log|x|+log||6-x|)dx` ……….i
`I=int_(2)^(4)(log|6-x|)/(log|6-x|+log|x|) dx{int_(a)^(b)f(x)dx=int_(1)^(b)f(a+b-x)dx}` ……ii
Adding i and ii
`2I=int_(2)^(4)(log|x|+log|6-x|)/(log|x|+log|6-x|)dx=int_(2)^(4)dx=2`
Hence `I=1`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Numerical)|28 Videos
  • CURVE TRACING

    CENGAGE|Exercise Exercise|24 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int x.2^(ln(x^(2)+1))dx is equal to

Integrate as ((x+1)(x+logx)^(2))/(x)

Evaluate the definite integral int_(2)^(4)(dx)/(x^(2)-1)

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

Integrate: int(a^(logx))/x dx

Evaluate int((x+1)/(x))(x+logx)^(2)dx

Integrate fillowing as ((1+logx)^(2))/(x)

Integrate the functions ((logx)^(2))/x

Evaluate int_(1)^(2)(1)/(x(1+logx)^(2))dx .

Evaluate int(1)/(x(1+logx)^(2))dx