Home
Class 12
MATHS
A and B are different matrices of order ...

A and B are different matrices of order n satisfying `A^(3)=B^(3)` and `A^(2)B=B^(2)A`. If det. `(A-B) ne 0`, then find the value of det. `(A^(2)+B^(2))`.

Text Solution

Verified by Experts

The correct Answer is:
0

`(A^(2)+B^(2))(A-B)=A^(3)-A^(2)B+B^(2)A-B^(3)=O`
`:.` det. `[(A^(2)+B^(2))(A-B)]=0`
`implies` det. `(A^(2)+B^(2))xx`det. `(A-B)=0`
`implies` det. `(A^(2)+B^(2))=0` (as det. `(A-B) ne0`)
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.3|10 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are symmetric matrices of order n,where (A ne B) ,then:

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are square matrices of order 3 such that A^(3)=8 B^(3)=8I and det. (AB-A-2B+2I) ne 0 , then identify the correct statement(s), where I is idensity matrix of order 3.

If A and B are two matrices of order 3 such that AB=O and A^(2)+B=I , then tr. (A^(2)+B^(2)) is equal to ________.