Home
Class 12
MATHS
IfD=d i ag[d1, d2, dn] , then prove tha...

If`D=d i ag[d_1, d_2, d_n]` , then prove that `f(D)=d i ag[f(d_1),f(d_2), ,f(d_n)],w h e r ef(x)` is a polynomial with scalar coefficient.

Text Solution

Verified by Experts

Let
`f(x)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(n)x^(n)`
`implies f(D)=a_(0)I+a_(1)D+a_(2)D^(2)+...+a_(n)D^(n)`
`=a_(0)xx"diag. "(1, 1, ... , 1)+a_(1)xx"diag. "(d_(1), d_(2), ..., d_(n))+a_(2)xx"diag. "(d_(1)^(2), d_(2)^(2), ..., d_(n)^(2))`
...
...
...
`="diag."(a_(0)+a_(1)d_(1)+a_(2)d_(1)^(2)+...+a_(n)d_(1)^(n), a_(0)+a_(1)d_(2)+a_(2)d_(2)^(2)+...+a_(n)d_(2)^(n), a_(0)+a_(1)d_(3)+a_(2)d_(3)^(2)+...+ a_(n)d_(3)^(n)`,
...
...
`a_(0)+a_(1)d_(n)+a_(2)d_(n)^(2)+...+a_(n)d_(n)^(2))`
`="diag."(f(d_(1)), f(d_(2)), ..., f(d_(n)))`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.3|10 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Statement 1: if D= diag [d_1, d_2, ,d_n] ,then D^(-1)= diag [d_1^(-1),d_2^(-1),...,d_n^(-1)] Statement 2: if D= diag [d_1, d_2, ,d_n] ,then D^n= diag [d_1^n,d_2^n,...,d_n^n]

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Let D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c| then the value of |(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c , is _____.

Let D_1=|a b a+b c d c+d a b a-b|a n dD_2=|a c a+c b d b+d a c a+b+c| then the value of |(D_1)/(D_2)|,w h e r eb!=0a n da d!=b c , is _____.

Discuss monotonocity of f(x)=x/(sinx)a n d g(x)= x / (tanx), w h e r e

A line meets the coordinate axes at A and B . A circle is circumscribed about the triangle O A Bdot If d_1a n dd_2 are distances of the tangents to the circle at the origin O from the points Aa n dB , respectively, then the diameter of the circle is (2d_1+d_2)/2 (b) (d_1+2d_2)/2 d_1+d_2 (d) (d_1d_2)/(d_1+d_2)

If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of g(x) = f'(x)^2+f''(x)f(x) in the interval [a, e] is

If d is the minimum distance between the curves f(x)=e^x a n dg(x)=(log)_e x , then the value of d^6 is

If f(1)=3,f^(prime)(1)=2,f''(1)=4,t h e n f^(-1)(3)= a. 1 b. -1/2 c. -2 d. none of these

Instead of the usual definition of derivative Df(x), if we define a new kind of derivative D^*F(x) by the formula D*f(x)=lim_(h->0)(f^2(x+h)-f^2(x))/h ,w h e r ef^2(x) mean [f(x)]^2 and if f(x)=xlogx ,then D^*f(x)|_(x=e) has the value (A)e (B) 2e (c) 4e (d) none of these