Home
Class 12
MATHS
If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show ...

If `A=[{:(0,1,1),(1,0,1),(1,1,0):}]` show that `A^(-1)=(1)/(2)(A^(2)=3I)`

Text Solution

Verified by Experts

We have,
`A[(0,1,1),(1,0,1),(1,1,0)]`
Cofactors are
`A_(11)=-1, A_(12)=1, A_(13)=1`,
`A_(21)=1, A_(22)=-1, A_(23)=1`,
`A_(31)=1, A_(31)=1, A_(32)=1 A_(33)=-1`
`:." adj A"=[(-1,1,1),(1,-1,1),(1,1,-1)]^(T)=[(-1,1,1),(1,-1,1),(1,1,-1)]`
`|A|=0-(-1)+1.1=2`
`:. A^(-1)=("adj A")/(|A|)=1/2 [(-1,1,1),(1,-1,1),(1,1,-1)]`
Now `A^(2)=[(0,1,1),(1,0,1),(1,1,0)][(0,1,1),(1,0,1),(1,1,0)]=[(2,1,1),(1,2,1),(1,1,2)]`
`:. (A^(2)-3I)/2=1/2 {[(2,1,1),(1,2,1),(1,1,2)]-[(3,0,0),(0,3,0),(0,0,3)]}`
`=1/2 |(-1,1,1),(1,-1,1),(1,1,-1)|=A^(-1)`
Hence proved.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=0 and hence find A^(-1) .

If A={:((3,1),(-1,2)):} show that A^(2)-5A+7I_(2)=0

If A [{:(1,2,2),(2,1,2),(2,2,1):}] , show that A^2 -4A -5I =0

If A= [(2,3,1),(1,0,2),(2,1,0)] compute A^(2) .

A= [(0,-2,1),(2,0,-4),(-1,0,0)] then A is

If A= {:[( 1,0,1),(0,1,2),(0,0,4)]:} ,then show that |3A| =27|A|

Given A=[{:(1,-1,2),(3,0,-2),(1,0,3):}] verify that A(adjA)_=(adjA)A=|A|I_(3) .

If A=[(1,0,2),(0,2,1),(2,0,3)] , prove that A^(3)-6A^(2)+7A+2I=0

If A=[(2,-1),(1,1)],B=[(1,0),(2,-2)],C=[(3,1),(-1,2)] Show that (i)(A+B)+C=A+(B+C). (ii)(AB)C=A(BC).

CENGAGE-MATRICES-Exercise 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show that A^(-1)=(1)/(2)(A^(2)=3I)

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta,...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. Show that the two matrices A, P^(-1) AP have the same characteristic r...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |