Home
Class 12
MATHS
Prove that inverse of a skew-symmetric m...

Prove that inverse of a skew-symmetric matrix (if it exists) is skew-symmetric.

Text Solution

Verified by Experts

A is skew-symmetric, then `A^(T)=-A`.
`:. (A^(-1))^(T)=(A^(T))^(-1)=(-A)^(-1) =-A^(-1)`
Thus, `A^(-1)` is skew-symmetric.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.4|12 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Let A be a square matrix. Then prove that (i) A + A^T is a symmetric matrix, (ii) A -A^T is a skew-symmetric matrix and (iii) AA^T and A^TA are symmetric matrices.

Let Aa n dB be two nonsinular square matrices, A^T a n dB^T are the transpose matrices of Aa n dB , respectively, then which of the following are correct? B^T A B is symmetric matrix if A is symmetric B^T A B is symmetric matrix if B is symmetric B^T A B is skew-symmetric matrix for every matrix A B^T A B is skew-symmetric matrix if A is skew-symmetric

If A, B are square materices of same order and B is a skewsymmetric matrix, show that A^(T)BA is skew-symmetric.

If A is symmetric then

Express the matrices as the sum of a symmetric matrix and a skew -symmetric matrix: [(4,-2),(3,-5)]

Express the matrices as the sum of a symmetric matrix and a skew -symmetric matrix: [(3,3,-1),(-2,-2,1),(-4,-5,2)] .

Prove that square matrix can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix.

If A is symmetric as well as skew-symmetric matrix, then A is

A,B,C are three matrices of the same order such that any two are symmetric and the 3^(rd) one is skew symmetric. If X=ABC+CBA and Y=ABC-CBA , then (XY)^(T) is

What is symmetric cuts?

CENGAGE-MATRICES-Exercise 13.5
  1. By the method of matrix inversion, solve the system. [(1,1,1),(2,5,7...

    Text Solution

    |

  2. Let A=[[2,0,7] , [0,1,0], [1,-2,1]] and B=[[-x,14x,7x] , [0,1,0] , [x,...

    Text Solution

    |

  3. If A=[{:(0,1,1),(1,0,1),(1,1,0):}] show that A^(-1)=(1)/(2)(A^(2)=3I)

    Text Solution

    |

  4. For the matrix A=[3 1 7 5] , find x and y so that A^2+x I=y Adot

    Text Solution

    |

  5. If A^(3)=O, then prove that (I-A)^(-1) =I+A+A^(2).

    Text Solution

    |

  6. If A=[[cos alpha, -sin alpha] , [sin alpha, cos alpha]], B=[[cos2beta,...

    Text Solution

    |

  7. If A=[(1,2,2),(2,2,3),(1,-1,3)], C=[(2,1,1),(2,2,1),(1,1,1)], D=[(10),...

    Text Solution

    |

  8. If A is a 2xx2 matrix such that A^(2)-4A+3I=O, then prove that (A+3I)^...

    Text Solution

    |

  9. For two unimobular complex numbers z(1) and z(2), find [(bar(z)(1),-z(...

    Text Solution

    |

  10. Prove that inverse of a skew-symmetric matrix (if it exists) is skew-s...

    Text Solution

    |

  11. If square matrix a is orthogonal, then prove that its inverse is also ...

    Text Solution

    |

  12. If A is a skew symmetric matrix, then B=(I-A)(I+A)^(-1) is (where I is...

    Text Solution

    |

  13. Prove that ("adj. "A)^(-1)=("adj. "A^(-1)).

    Text Solution

    |

  14. Using elementary transformation, find the inverse of the matrix A=[(a,...

    Text Solution

    |

  15. Show that the two matrices A, P^(-1) AP have the same characteristic r...

    Text Solution

    |

  16. Show that the characteristics roots of an idempotent matris are either...

    Text Solution

    |

  17. If alpha is a characteristic root of a nonsin-gular matrix, then prove...

    Text Solution

    |