Home
Class 12
MATHS
Elements of a matrix A or orddr 10xx10 a...

Elements of a matrix `A` or orddr `10xx10` are defined as `a_(i j)=w^(i+j)` (where `w` is cube root of unity), then trace `(A)` of the matrix is `0` b. `1` c. `3` d. none of these

A

0

B

1

C

3

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

`tr (A)= sum_(i=j) a_("ij")`
`=(a_(11)+a_(22)+a_(33)+...+a_(1010))`
`=(omega^(2)+omega^(4)+omega^(6)+...+ omega^(20))`
`=omega^(2) (1+omega^(2)+omega^(4) +...+ omega^(18))`
`=omega^(2) [(1+omega+omega^(2))+...+ (1+omega+omega^(2))+1]`
`=omega^(2)xx1`
`=omega^(2)xx1`
`=omega^(2)`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A is a 3xx3 skew-symmetric matrix, then trace of A is equal to -1 b. 1 c. |A| d. none of these

If a square matix a of order three is defined A=[a_("ij")] where a_("ij")=s g n(i-j) , then prove that A is skew-symmetric matrix.

If the cube roots of unity are 1, omega, omega^(2) then the roots of the equation (x-1)^(3)+8=0 , are

Construct a 3times3 matrix whose elements are given by a_(ij)=|i-2j|

If omegane1 is a cube root of unity, show that the roots of the equation (z-1)^(3)+8=0 are -1,1-2omega,1-2omega^(2) .

Construct a 3times3 matrix whose elements are given by a_(ij)=((i+j)^(3))/(3)

Construct a 3 xx 3 matrix whose elements are a_(ij) = i^(2)j^(2)

CENGAGE-MATRICES-Exercise (Single)
  1. If A is symmetric as well as skew-symmetric matrix, then A is

    Text Solution

    |

  2. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  3. If A1, A2, , A(2n-1)a r en skew-symmetric matrices of same order, the...

    Text Solution

    |

  4. The equation [(1, x, y)][(1,3,1),(0,2,-1),(0,2,-1)] [(1),(x),(y)]=[0]...

    Text Solution

    |

  5. Let Aa n dB be two 2xx2 matrices. Consider the statements (i) A B=O,...

    Text Solution

    |

  6. The number of diagonal matrix, A or ordern which A^3=A is

    Text Solution

    |

  7. A is a 2xx2 matrix such that A[1-1]=[-1 2]a n dA^2[1-1]=[1 0]dot The ...

    Text Solution

    |

  8. If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos...

    Text Solution

    |

  9. If A=[a b0a] is nth root of I2, then choose the correct statements: If...

    Text Solution

    |

  10. If the square of the matrix [(alpha,beta),(gamma,-alpha)] is the unit ...

    Text Solution

    |

  11. If A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8 equals 4B b. 128 B c. -128 B...

    Text Solution

    |

  12. If [2-1 1 0-3 4]A=[-1-8-10 1-2-5 9 22 15] , then sum of all the elemen...

    Text Solution

    |

  13. For each real x, -1 lt x lt 1. Let A(x) be the matrix (1-x)^(-1) [(1,-...

    Text Solution

    |

  14. If A=[(0,-"tan"(alpha)/(2)),("tan"(alpha)/(2),0)] and I is the identit...

    Text Solution

    |

  15. The number of solutions of the matrix equation X^2=[1 1 2 3] is a. mor...

    Text Solution

    |

  16. If A=[a b c d] (where b c!=0 ) satisfies the equations x^2+k=0,t h e n...

    Text Solution

    |

  17. A=[[2,1],[4,1]]; B=[[3,4],[2,3]] & c=[[3,-4],[-2,3]], tr(A)+tr[(ABC)/2...

    Text Solution

    |

  18. If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0)...

    Text Solution

    |

  19. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  20. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |