Home
Class 12
MATHS
Matrix A such that A^2=2A-I ,w h e r eI ...

Matrix `A` such that `A^2=2A-I ,w h e r eI` is the identity matrix, the for `ngeq2. A^n` is equal to `2^(n-1)A-(n-1)l` b. `2^(n-1)A-I` c. `n A-(n-1)l` d. `n A-I`

A

`2^(n-1) A-(n-1)I`

B

`2^(n-1) A-I`

C

`nA-(n-1)I`

D

`nA-I`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `A^(2)=2A-I`
Now, `A^(3)=A(A^(2))`
`=A (2A-I)`
`=2A^(2)-A`
`=2(2A-I)-A`
`=3A-2I`
`A^(4)=A(A^(3))`
`=A(3A-2I)`
`=3A^(2)-2A`
`=3(2A-I)-2A`
`=4A-3I`
Following this, we can say `A^(n)=nA-(n-1)I`.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise 13.5|17 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A is a nilpotent matrix of index 2, then for any positive integer n ,A(I+A)^n is equal to A^(-1) b. A c. A^n d. I_n

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an identity matrix, prove theat det (M-I)=0.

If k in R_ot h e ndet{a d j(k I_n)} is equal to K^(n-1) b. K^(n(n-1)) c. K^n d. k

If sinx+cos e cx=2, then sin^n x+cos e c^n x is equal to 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. I-(2^n-1)Z d. none of these

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

sum_(k=1)^ook(1-1/n)^(k-1)= a. n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

If n in N >1 , then the sum of real part of roots of z^n=(z+1)^n is equal to n/2 b. ((n-1))/2 c. n/2 d. ((1-n))/2

If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b) n(n+1)y (c) n y (d) n^2y

CENGAGE-MATRICES-Exercise (Single)
  1. If [(cos\ (2pi)/7,-sin\ (2pi)/7),(sin\ (2pi)/7,cos\ (2pi)/7)]^k=[(1,0)...

    Text Solution

    |

  2. If A and B are square matrices of order n , then prove that Aa n dB wi...

    Text Solution

    |

  3. Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the fo...

    Text Solution

    |

  4. Let A=[(0, alpha),(0,0)] and (A+I)^(50) -50A=[(a,b),(c,d)]. Then the v...

    Text Solution

    |

  5. If Z is an idempotent matrix, then (I+Z)^n I+2^n Z b. I+(2^n-1)Z c. ...

    Text Solution

    |

  6. if Aa n dB are squares matrices such that A^(2006)=Oa n dA B=A+B ,t h ...

    Text Solution

    |

  7. If matrix A is given by A=[[6,11] , [2,4]] then determinant of A^(2005...

    Text Solution

    |

  8. If A is a non-diagonal involutory matrix, then

    Text Solution

    |

  9. If A and B are two nonzero square matrices of the same order such that...

    Text Solution

    |

  10. If Aa n dB are symmetric matrices of the same order and X=A B+B Aa n d...

    Text Solution

    |

  11. If A ,B ,A+I ,A+B are idempotent matrices, then A B is equal to

    Text Solution

    |

  12. If A=[(0,x),(y,0)] and A^(3)+A=O then sum of possible values of xy is

    Text Solution

    |

  13. Which of the following is an orthogonal matrix ?

    Text Solution

    |

  14. Let A and B be two square matrices of the same size such that AB^(T)+B...

    Text Solution

    |

  15. In which of the following type of matrix inverse does not exist always...

    Text Solution

    |

  16. Let A be an nth-order square matrix and B be its adjoint, then |A B+K ...

    Text Solution

    |

  17. If A=[(a,b,c),(x,y,x),(p,q,r)], B=[(q,-b,y),(-p,a,-x),(r,-c,z)] and If...

    Text Solution

    |

  18. If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),...

    Text Solution

    |

  19. If A=[(a+ib,c+id),(-c+id,a-ib)] and a^(2)+b^(2)+c^(2)+d^(2)=1, then A^...

    Text Solution

    |

  20. Id [1//25 0x1//25]=[5 0-a5]^(-2) , then the value of x is a//125 b. 2a...

    Text Solution

    |