Home
Class 12
MATHS
If A1=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1...

If `A_1=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)],A_2=[(0, 0, 0,i),(0, 0,-i, 0), (0,i,0, 0),(-i,0, 0, 0)],t h e nA_i A_k+A_k A_i` is equal to
a. `2Iifi=k`
b. `Oifi!=k`
c. `2lifi!=k`
d. `O` always

A

`2I` if `i=k`

B

`O` if `i ne k`

C

`2I` if `i ne k`

D

`O` always

Text Solution

Verified by Experts

The correct Answer is:
A, B

Let `i=k=1` (say). Then,
`A_(r)A_(k)=A_(k)A_(i)=A_(1)A_(1)`
`A_(i)A_(k)=A_(1)A_(1)=[(0,0,0,0),(0,0,1,0),(0,1,0,0),(1,0,0,0)]xx[(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)]`
`=[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)]=I`
`A_(2)A_(2)=[(0,0,0,i),(0,0,-i,0),(0,i,0,0),(-i,0,0,0)]xx[(0,0,0,i),(0,0,-i,0),(0,i,0,0),(-i,0,0,0)]`
`=[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)]=I`
`:. A_(i)A_(k)+A_(k)A_(i)=I+I=2I`
If `i ne k` let `i=1` and `k=2`, then
`A_(i)A_(k)=A_(1)A_(2)=[(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)]xx[(0,0,0,i),(0,0,-i,0),(0,i,0,0),(-i,0,0,0)]`
`=[(-i,0,0,0),(0,i,0,0),(0,0,-i,0),(0,0,0,i)]`
Also, `A_(2)A_(1)=[(0,0,0,i),(0,0,-i,0),(0,i,0,0),(-i,0,0,0)]xx[(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0)]`
`=[(i,0,0,0),(0,-i,0,0),(0,0,i,0),(0,0,0,-i)]`
`implies A_(1)A_(2)+A_(2)A_(1)=O`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Comprehension)|18 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Single)|65 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

A= [(0,-2,1),(2,0,-4),(-1,0,0)] then A is

(i) {:[( 1,0,0),( 0,1,0),( 0,0,1) ]:}" "(ii) {:[( 1,0,4),(3,5,-1),( 0,1,2) ]:}

If A=|{:(8,0,0),(0,-1,0),(0,0,1):}| then A is:

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I

CENGAGE-MATRICES-Exercise (Multiple)
  1. Let A and B be two nonsingular square matrices, A^(T) and B^(T) are th...

    Text Solution

    |

  2. If B is an idempotent matrix, and A=I-B, then

    Text Solution

    |

  3. If A1=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)],A2=[(0,...

    Text Solution

    |

  4. Suppose a(1), a(2), .... Are real numbers, with a(1) ne 0. If a(1), a(...

    Text Solution

    |

  5. If alpha, beta, gamma are three real numbers and A=[(1,cos (alpha-beta...

    Text Solution

    |

  6. If D(1) and D(2) are two 3xx3 diagonal matrices, then which of the fol...

    Text Solution

    |

  7. Let A be the 2 xx 2 matrix given by A=[a("ij")] where a("ij") in {0, 1...

    Text Solution

    |

  8. If S=[(0,1,1),(1,0,1),(1,1,0)] and A=[(b+c,c-a,b-a),(c-b,c+b,a-b),(b-c...

    Text Solution

    |

  9. P is a non-singular matrix and A, B are two matrices such that B=P^(-1...

    Text Solution

    |

  10. Let A=[(1,2,2),(2,1,2),(2,2,1)]. Then

    Text Solution

    |

  11. If A=[{:(1,0,0),(1,0,1),(0,1,0):}], then

    Text Solution

    |

  12. If Ais symmetric and B is skew-symmetric matrix, then which of the fol...

    Text Solution

    |

  13. If A=((a(i j)))(nxxn) and f is a function, we define f(A)=((f(a(i j)))...

    Text Solution

    |

  14. If a is matrix such that A^(2)+A+2I=O, then which of the following is/...

    Text Solution

    |

  15. If A = [(3,-3,4),(2,-3,4),(0,-1,1)], then adj (adj A) is

    Text Solution

    |

  16. If [(1,-tan theta),(tan theta,1)][(1,tan theta),(-tan theta,1)]^(-1)=[...

    Text Solution

    |

  17. If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)], then

    Text Solution

    |

  18. If A is an invertible matrix, tehn (a d jdotA)^(-1) is equal to a d jd...

    Text Solution

    |

  19. If A and B are two invertible matrices of the same order, then adj (AB...

    Text Solution

    |

  20. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |