Home
Class 12
MATHS
Let for A=[(1,0,0),(2,1,0),(3,2,1)], the...

Let for `A=[(1,0,0),(2,1,0),(3,2,1)]`, there be three row matrices `R_(1), R_(2)` and `R_(3)`, satifying the relations, `R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)]` and `R_(3)A=[(2,3,1)]`. If B is square matrix of order 3 with rows `R_(1), R_(2)` and `R_(3)` in order, then
The value of det. `(2A^(100) B^(3)-A^(99) B^(4))` is

A

`-27`

B

`-9`

C

`-3`

D

9

Text Solution

Verified by Experts

The correct Answer is:
A

`overset(B)([(-,R_(1),-),(-,R_(2),-),(-,R_(3),-)])overset(A)([(1,0,0),(2,1,0),(3,2,1)])=overset(C)([(1,0,0),(2,3,0),(2,3,1)])` (1)
`:.` (det. B) (det. A)=3
`:.` (det. B)=3 [as det. A=1]
det. `(2A^(100)B^(3)-A^(99)B^(4))`
= det. `(A^(99) (2A-B)B^(3))`
`=("det. A")^(99)xxdet. (2A-B)xx("det B")^(3)`
Now from (1), we get
`B=A^(-1) C=[(1,0,0),(-2,1,0),(1,-2,1)][(1,0,0),(2,3,0),(2,3,1)]`
`=[(1,0,0),(0,3,0),(-1,-3,1)]`
`:. 2A-B=[(1,0,0),(4,-1,0),(7,7,1)]`
`:.` det. `(2A-B)=-1`
`:.` det. `(2A^(100) B^(3)-A^(99) B^(4))=(1)^(99) (-1) (3)^(3)=-27`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

Find the currents going through the three resistors R_(1),R_(2) and R_(3) in the circuit of figure.

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] are row equivalent.

In triangle ABC, if r_(1) = 2r_(2) = 3r_(3) , then a : b is equal to

Let P=[(1,2,1),(0,1,-1),(3,1,1)] . If the product PQ has inverse R=[(-1,0,1),(1,1,3),(2,0,2)] then Q^(-1) equals

In DeltaABC , if r = 1, R = 3, and s = 5 , then the value of a^(2) + b^(2) + c^(2) is _____

In Delta ABC , if r_(1) lt r_(2) lt r_(3) , then find the order of lengths of the sides

The value of r, such that 1 + r + r^(2) + r^(3) … = 3/4 is …

If in a triangle (r)/(r_(1)) = (r_(2))/(r_(3)) , then

CENGAGE-MATRICES-Exercise (Comprehension)
  1. Let a be a matrix of order 2xx2 such that A^(2)=O. A^(2)-(a+d)A+(ad-...

    Text Solution

    |

  2. Let a be a matrix of order 2xx2 such that A^(2)=O. tr (A) is equal t...

    Text Solution

    |

  3. Let a be a matrix of order 2xx2 such that A^(2)=O. (I+A)^(100) =

    Text Solution

    |

  4. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  5. if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (...

    Text Solution

    |

  6. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  7. Consider an arbitarary 3xx3 non-singular matrix A[a("ij")]. A maxtrix ...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  10. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  11. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  12. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  13. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  14. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  15. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  16. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  17. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  18. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |