Home
Class 12
MATHS
A and B are square matrices such that de...

A and B are square matrices such that det. `(A)=1, B B^(T)=I`, det `(B) gt 0`, and A( adj. A + adj. B)=B.
`AB^(-1)=`

A

`B^(-1)A`

B

`AB^(-1)`

C

`A^(T)B^(-1)`

D

`B^(T)A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
A

`B+A=B^(2)`
`implies B^(T)B+B^(T)A=B^(T)B^(2)`
`implies I+B^(T)A=B`
`implies B^(T)A=B-I`
Now from (1) we get
`B^(2)-B=A`
`implies B(B-I)=A`
Multiplying both sides by `B^(-1)`, we get
`implies B-I=AB^(-1)`
So, from (1) and (2), we get
`AB^(-1)=B^(T)A`
`implies AB^(-1)=B^(-1)A" "( :' B B^(T)=I" then "B^(T)=B^(-1))`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Multiple)|33 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

A and B are square matrices such that det. (A)=1, B B^(T)=I , det (B) gt 0 , and A( adj. A + adj. B)=B . The value of det (A+B) is

A and B be 3xx3 matrices such that AB+A=0 , then

If A and B are square matrices of order 3 such that det. (A) = -2 and det.(B)= 1 , then det.(A^(-1)adjB^(-1).adj(2A^(-1)) is equal to

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are two square matrices such that B=-A^(-1)BA , then (A+B)^(2) is equal to

A and B are two square matrices such that A^(2)B=BA and if (AB)^(10)=A^(k)B^(10) , then k is

If A and B are square matrices of same order such that AB=O and B ne O , then prove that |A|=0 .

A, B and C are three square matrices of order 3 such that A= diag. (x, y, x), det. (B)=4 and det. (C)=2 , where x, y, z in I^(+) . If det. (adj. (adj. (ABC))) =2^(16)xx3^(8)xx7^(4) , then the number of distinct possible matrices A is ________ .

CENGAGE-MATRICES-Exercise (Comprehension)
  1. Let a be a matrix of order 2xx2 such that A^(2)=O. A^(2)-(a+d)A+(ad-...

    Text Solution

    |

  2. Let a be a matrix of order 2xx2 such that A^(2)=O. tr (A) is equal t...

    Text Solution

    |

  3. Let a be a matrix of order 2xx2 such that A^(2)=O. (I+A)^(100) =

    Text Solution

    |

  4. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  5. if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (...

    Text Solution

    |

  6. If A and B are two square matrices of order 3xx3 which satify AB=A and...

    Text Solution

    |

  7. Consider an arbitarary 3xx3 non-singular matrix A[a("ij")]. A maxtrix ...

    Text Solution

    |

  8. Let A=[a("ij")] be 3xx3 matrix and B=[b("ij")] be 3xx3 matrix such tha...

    Text Solution

    |

  9. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  10. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  11. Let A=[(1,0,0),(1,0,1),(0,1,0)] satisfies A^(n)=A^(n-1)+A^(2)-I for n ...

    Text Solution

    |

  12. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  13. Let for A=[(1,0,0),(2,1,0),(3,2,1)], there be three row matrices R(1),...

    Text Solution

    |

  14. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  15. A and B are square matrices such that det. (A)=1, B B^(T)=I, det (B) g...

    Text Solution

    |

  16. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  17. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |

  18. Let A be an mxxn matrix. If there exists a matrix L of type nxxm such ...

    Text Solution

    |