Home
Class 12
MATHS
If A is an 3xx3 non-singular matrix s...

If A is an `3xx3` non-singular matrix such that `AA^'=""A^' A` and `B""=""A^(-1)A^'` , then BB equals (1) `I""+""B` (2) `I` (3) `B^(-1)` (4) `(B^(-1))^'`

A

`I+B`

B

`I`

C

`B^(-1)`

D

`(B^(-1))'`

Text Solution

Verified by Experts

The correct Answer is:
B

`B=A^(-1) A'`
`implies AB=A'`
`AB B'=A'B'=(BA)'`
`=(A^(-1) A'A)'=(A^(-1) A A')'=A`
`implies B B'=I`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATRICES

    CENGAGE|Exercise Single correct Answer|34 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Numerical)|24 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Multiple Correct Answer Type|7 Videos

Similar Questions

Explore conceptually related problems

If A is a 3xx3 non -singular matrix such that "AA"^(T)=A^(T)A "and" B=A^(-1)A^(T), "then" BB^(T) =

If A is a non-singular matrix then |A^(-1)| =

If A is a non-singular matrix such that A^(-1)=[(5,3),(-2,-1)], "then" (A^(T))^(-1) =

If A is a non singular matrix such that A^(-1)=[[7,-2],[-3,1]] then (A^(T))^(-1) is :

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

Let A and B be two non-singular square matrices such that B ne I and AB^(2)=BA . If A^(3)-B^(-1)A^(3)B^(n) , then value of n is

If a and B are non-singular symmetric matrices such that AB=BA , then prove that A^(-1) B^(-1) is symmetric matrix.