Home
Class 12
MATHS
lim(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sq...

`lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x))` is equal to

A

`1/(sqrt(2pi))`

B

`sqrtpi/2`

C

`sqrt(2/pi)`

D

`sqrtpi`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).

lim_(xto3)(sqrt(x)-sqrt(3))/(sqrt(x^(2)-9)) is equal to

lim_(xto0)(sqrt(1+sinx)-sqrt(1-sinx))/tanx

lim_(xto0)(sqrt2-sqrt(1+cosx))/(sin^(2)x)

lim_(xto0)(sin2x)/(1-sqrt(1-x))

The value of sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)] is equal to

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .

lim_(xto4)(sqrt(1+x)-sqrt(9-x))/(x-4) is equal to

lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4