Home
Class 12
MATHS
If the circle x^2+y^2=a^2 intersects the...

If the circle `x^2+y^2=a^2` intersects the hyperbola `x y=c^2` at four points `P(x_1, y_1),Q(x_2, y_2),R(x_3, y_3),` and `S(x_4, y_4),` then `x_1+x_2+x_3+x_4=0` `y_1+y_2+y_3+y_4=0` `x_1x_2x_3x_4=C^4` `y_1y_2y_3y_4=C^4`

A

`x_(1)+x_(2)+x_(3)+x_(4)=0`

B

`y_(1)+y_(2)+y_(3)+y_(4)=0`

C

`x_(1)x_(2)x_(3)x_(4)=c^(4)`

D

`y_(1)y_(2)y_(3)y_(4)=c^(4)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

Solving `xy=c^(2) and x^(2)+y^(2)=a^(2)`, we have
`x^(2)+(c^(4))/(x^(2))=a^(2)`
`"or "x^(4)-a^(2)x^(2)+c^(4)=0`
`therefore" "Sigmax_(i)=0 and x_(1)x_(2)x_(3)x_(4)=c^(4)`
Similarly, if we eliminate y, then `Sy_(i)=0 and y_(1)y_(2)y_(3)y_(4)=c^(4)` .
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • HYPERBOLA

    CENGAGE|Exercise Exercise (Comprehension)|21 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • HYPERBOLA

    CENGAGE|Exercise Exercise (Single)|68 Videos
  • HIGHT AND DISTANCE

    CENGAGE|Exercise JEE Previous Year|3 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|21 Videos

Similar Questions

Explore conceptually related problems

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the normals to the ellipse x^2/a^2+y^2/b^2= 1 at the points (X_1, y_1), (x_2, y_2) and (x_3, y_3) are concurrent, prove that |(x_1,y_1,x_1y_1),(x_2,y_2,x_2y_2),(x_3,y_3,x_3y_3)|=0 .

Knowledge Check

  • The circle x^(2) + y^(2) = 4 x + 8 y + 5 intersects the line 3x -4y =m at two distinct points if

    A
    `15 lt m lt 65`
    B
    `35 lt m lt 85`
    C
    `-85 lt m lt - 35`
    D
    `-35 lt m gt 15`
  • The circle x ^(2) + y ^(2) = 4x + 8y + 5 intersects the line 3x - 4y = m at two distinct points if

    A
    `15 lt m lt 65`
    B
    `35 lt m lt 85`
    C
    `- 85 lt m lt - 35`
    D
    `- 35 lt m lt 15`
  • The circle x^2 + y^2 - 3x - 4y + 2 = 0 cuts the x axis at the points

    A
    `(1,0),(2,0)`
    B
    `(1,0),(-1,0)`
    C
    `(3,0), (4,0)`
    D
    `(2,0),(-3,0)`
  • Similar Questions

    Explore conceptually related problems

    If the join of (x_1,y_1) and (x_2,y_2) makes on obtuse angle at (x_3,y_3), then prove than (x_3-x_1)(x_3-x_2)+(y_3-y_1)(y_3-y_2)<0

    Find the image of the circle x^2+y^2-2x+4y-4=0 in the line 2x-3y+5=0

    Tangent is drawn at any point (x_1, y_1) other than the vertex on the parabola y^2=4a x . If tangents are drawn from any point on this tangent to the circle x^2+y^2=a^2 such that all the chords of contact pass through a fixed point (x_2,y_2), then (a) x_1,a ,x_2 in GP (b) (y_1)/2,a ,y_2 are in GP (c) -4,(y_1)/(y_2), (x_1//x_2) are in GP (d) x_1x_2+y_1y_2=a^2

    The coordinates of the ends of a focal chord of the parabola y^2=4a x are (x_1, y_1) and (x_2, y_2) . Then find the value of x_1x_2+y_1y_2 .

    If x_1,x_2,x_3 as well as y_1, y_2, y_3 are in G.P. with same common ratio, then prove that the points (x_1, y_1),(x_2,y_2),a n d(x_3, y_3) are collinear.