Home
Class 12
MATHS
Prove that [underset(xto0)lim(sinx)/(x)]...

Prove that `[underset(xto0)lim(sinx)/(x)]=0,` where `[.]` represents the greatest integer function.

Text Solution

Verified by Experts

See the graphs of y=x and `y=sin^(-1)`x in the following figure.

For `f(x)=sin^(-1)xthereforef'(x)=1/sqrt(1-x^(2))`
f'(0)=1
So the curvetouches the line y=x at x=0.
For `0ltxlt1, f'(x)gt1`
So the graph of y `sin^(-1)x` lies above the graph of y=x.
From the graph, when `xto0^(+)`, the graph of `y=sin^(-1)` is above the graph of y=x
or `sin^(-1)xgtxrArr(sin^(-1)x)/xgt1rArr[underset(xto0^(+))(lim)(sin^(-1)x)/x]=1`
When `x to 0^(-)`, the graph of `y=sin^(-1)x` is below the graph of y = x
or `sin^(-1)xltxrArr(sin^(-1)x)/xgt1("as x is negative")rArr[underset(xto0^(+))(lim)(sin^(-1)x)/x]=1`
Thus, `[underset(xto0^(+))(lim)(sin^(-1)x)/x]=1`
Promotional Banner

Topper's Solved these Questions

  • GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise|18 Videos
  • GETTING STARTED WITH GRAPHS

    CENGAGE|Exercise Exercise|18 Videos
  • GRAPHICAL TRANSFORMATIONS

    CENGAGE|Exercise Exercise|14 Videos

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Evaluate: ("lim")_(xvec0)(tanx)/x where [dot] represents the greatest integer function

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Draw the graph of |y|=[x] , where [.] represents the greatest integer function.

Prove that int_0^x[t]dt=([x]([x]-1))/2+[x](x-[x]), where [.] denotes the greatest integer function.

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)