Home
Class 12
MATHS
Let S(1) = sum(j=1)^(10) j(j-1)""^(10)C...

Let `S_(1) = sum__(j=1)^(10) j(j-1)""^(10)C_(j), S_(2) = sum_(j=1)^(10)""^(10)C_(j)`, and `S_(3) = sum_(j=1)^(10) j^(2).""^(10)C_(j)`.
Statement 1 : `S_(3) xx 2^(9)`.
Statement 2 : `S_(1) = 90 xx 2^(8)` and `S_(2) = 10 xx 2^(8)`.

A

Statement 1 is false, statement 2 is true.

B

Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.

C

Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 2.

D

statement 1 is true, statement 2 is false.

Text Solution

Verified by Experts

The correct Answer is:
B

`S_(1)=underset(j=1)overset(10)sumj(j-1)(10!)/(j(j-1)(j-2)!(10-j)!)`
`= 90underset(j=1)overset(10)sum(8!)/((j-2)!(8-(j-2)!)`
`=90underset(j=2)overset(10)sum.^(8)C_(j-2)=90xx2^(8)`
`S_(1) = underset(j=1)overset(10)sum(10!)/(j(j-1)!(9-(j-1))!)`
`= 10underset(j=1)overset(10)sum(9!)/((j-1)!(9-(j-1))!)`
`10underset( j=1)overset(10)sum.^(9)C_(j-1)= 10 xx 2^(9)`
`S_(3) = underset(j=1)overset(10)sum[j(j-1)+j] .^(10)C_(j)`
`= underset(j=1)overset(10)sumj(j-1).^(10)C_(j)+underset(j=1)overset(10)sum..^(10)C_(j)`
`= 90xx2^(8)+10xx2^(9) = 55 xx 2^(9)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Numerical)|25 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(j=1)^(10)sum_(i=1)^(10)ixx2^(j)

Find the sum sum_(j=0)^(n) (""^(4n+1)C_(j)+""^(4n+1)C_(2n-j)) .

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , then the value of (sumsum)_(0leiltjlen) (i/(""^(n)C_(i))+j/(""^(n)C_(j)))

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

The sum sum_(k=1)^(10)underset(i lt j lt k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))

If a_(ij)=(1)/(2) (3i-2j) and A = [a_(ij)]_(2xx2) is

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(r-1)) is equal to

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(a^(i+j+k)) is equal to (where |a| gt 1 )