Home
Class 12
MATHS
For r = 0, 1,"…..",10, let A(r),B(r), an...

For `r = 0, 1,"…..",10`, let `A_(r),B_(r)`, and `C_(r)` denote, respectively, the coefficient of `x^(r )` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`. Then `sum_(r=1)^(10) A_(r)(B_(10)B_(r ) - C_(10)A_(r ))` is equal to

A

`B_(10) - C_(10)`

B

`A_(1)(B_(10)^(2) - C_(10)A_(10))`

C

0

D

`C_(10) - B_(10)`

Text Solution

Verified by Experts

The correct Answer is:
D

`A_(r), B_(r)`, and `C_(r)` denotes, respectively, the coefficient of `x^(r)` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`.
`:. A_(r) = .^(10)C_(r),B_(r)=.^(20)C_(r),C_(r)=.^(30)C_(r)`
`:. underset(r=1)overset(10)sumA_(r)(B_(10)B_(r)-C_(10)A_(r))`
`= B_(10)underset(r=1)overset(10)sumA_(r)B_(r)-C_(10)underset(r=1)overset(10)sum(A_(r))^(2)`
`= B_(10)underset(r=1)overset(10)sum.^(10)C_(r).^(20)C_(r)-C_(10)underset(r=1)overset(10)sum(.^(10)C_(r))^(2)`
`=B_(10)underset(r=1)overset(10)sum.^(10)C_(r).^(20)C_(20-r)-C_(10)underset(r=1)overset(10)sum(.^(10)C_(r))^(2)`
`= B_(10)[(underset(r=0)overset(10)sum.^(10)C_(r).^(20)C_(20-r))-1]-C_(10)[(underset(r=0)overset(10)sum(.^(30)C_(r))^(2))-1]`
`=B_(10)[.^(30)C_(2)-1]-C_(10)[.^(20)C_(10) - 1]`
`( :'.^(n)C_(0)^(2)+.^(n)C_(1)^(2)+.^(n)C_(2)^(2)+"...."+.^(n)C_(n)^(2)=.^(2n)C_(n))`
`=[B_(10).^(30)C_(20)-C_(10).^(20)C_(10)]+[C_(10)-B_(10)]`
`=[.^(20)C_(10).^(30)C_(20)-.^(30)C_(10).^(20)C_(10)] + [C_(10) - B_(10)]`
`= C_(10) - B_(10)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Single correct Answer|62 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Numerical)|25 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|10 Videos
  • CIRCLE

    CENGAGE|Exercise MATRIX MATCH TYPE|6 Videos

Similar Questions

Explore conceptually related problems

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(r-1)) is equal to

Find the coefficient of x^(25) in expansion of expression sum_(r=0)^(50)^(50)C_r(2x-3)^r(2-x)^(50-r) .

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of sum_(r=0)^(10) (-1)^(r).4^(10-r)""^(30)C_(r)""^(30-r)C_(10-r) is equal to

If the coefficients of (r-5)^th and (2r - 1)^th terms in the expansion of (1 + x)^34 are equal, find r.

If n is a positive integer and r is a nonnegative integer, prove that the coefficients of x^r and x^(n-r) in the expansion of (1+x)^(n) are equal.

If s_(n) = sum_(r = 0)^(n) 1/(""^(n)C_(r)) and t_(n) = sum _(r = 0)^(n) r/(""^(n)C_(r)) ,then t_(n)/s_(n) is equal to

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))