Home
Class 12
MATHS
Let f(x+y)=f(x)dotf(y) for all xa n dydo...

Let `f(x+y)=f(x)dotf(y)` for all `xa n dydot` Suppose `f(5)=2a n df^(prime)(0)=3.` Find `f^(prime)(5)dot`

Text Solution

Verified by Experts

The correct Answer is:
6

`f(x+y)=f(x)f(y)" (1)"`
`f'(5)=underset(hrarr0)lim(f(5+h)-f(5))/(h)`
`=underset(hrarr0)lim(f(5)f(h)-f(5))/(h)`
`=f(5)underset(hrarr0)lim(f(h)-1)/(h)`
`=f(5)underset(hrarr0)lim(f(h)-1)/(h)`
In (1), replace x by 5 and y by 0. Then, `f(5+0)=f(5)cdotf(0)`
`"or "f(0)=1`
`"or "f'(5)=f(5)underset(hrarr0)lim(f(h)-f(0))/(h)`
`=f(5)f'(0)=2xx3=6`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f: RvecR be a function satisfying condition f(x+y^3)=f(x)+[f(y)]^3 for all x ,y in Rdot If f^(prime)(0)geq0, find f(10)dot

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

Knowledge Check

  • f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to

    A
    6
    B
    3
    C
    5
    D
    0
  • Similar Questions

    Explore conceptually related problems

    Let (f(x+y)-f(x))/2=(f(y)-a)/2+x y for all real x and ydot If f(x) is differentiable and f^(prime)(0) exists for all real permissible value of a and is equal to sqrt(5a-1-a^2)dot Then a) f(x) is positive for all real x b) f(x) is negative for all real x c) f(x)=0 has real roots d) Nothing can be said about the sign of f(x)

    Let f be a function such that f(x+y)=f(x)+f(y) for all xa n dya n df(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

    If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

    Let f((x+y)/2)=(f(x)+f(y))/2fora l lr e a lxa n dy If f^(prime)(0) exists and equals -1a n df(0)=1,t h e n f i n d f(2)dot

    Let fa n dg be differentiable on R and suppose f(0)=g(0)a n df^(prime)(x)lt=g^(prime)(x) for all xgeq0. Then show that f(x)lt=g(x) for all xgeq0.

    Let f(x^m y^n)=mf(x)+nf(y) for all x , y in R^+ and for all m ,n in Rdot If f^(prime)(x) exists and has the value e/x , then find (lim)_(xvec0)(f(1+x))/x

    A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot