Home
Class 12
MATHS
If f(x)=(1+x)^2, then the value of f(x0)...

If `f(x)=(1+x)^2,` then the value of `f(x0)+f^(prime)(0)` `+(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot`

Text Solution

Verified by Experts

The correct Answer is:
`2^(n)`

`f(x)=(1+x)^(n),f(0)=1`
`therefore" "f'(x)=n(1+x)^(n-1),f'(0)=n`
`therefore" "f''(x)=n(n-1)(1+x)^(n-2),f''(0)=n(n-1)`
Similarly, proceeding, we have
`f'''(0)=n(n-1)(n-2)`
`f''''(0)=n(n-1)(n-2)(n-3)` and so on.
`f^(n)(0)=n(n-1)(n-2)(n-3)...1`
`"or "f(0)+f'(0)+(f''(0))/(2!)+(f'''(0))/(3!)+...(f^(n)(0))/(n!)+`
`=1+n+(n(n-1))/(2!)+(n(n-1)(n-2))/(3!)+...+(n(n-1)(n-2)...1)/(n!)+...`
`=""^(n)C_(0)+""^(n)C_(1)+""^(n)C_(2)...+""^(n)C_(n-1)+""^(n)C_(n)=2^(n)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1+x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+(f^(''')(0))/(3!)+......(f^n(0))/(n !)dot

If f(x)=2x^(2)+3x-5 , then prove that f'(0)+3f'(-1)=0

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0fora l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d)none of these

Let y=f(x) be a parabola, having its axis parallel to the y-axis, which is touched by the line y=x at x=1. Then, (a) 2f(0)=1-f^(prime)(0) (b) f(0)+f^(prime)(0)+f^(0)=1 (c) f^(prime)(1)=1 (d) f^(prime)(0)=f^(prime)(1)

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

If f'(x)=f(x)+int_(0)^(1)f(x)dx ,given f(0)=1 , then the value of f(log_(e)2) is

Let f(x0 be a non-constant thrice differentiable function defined on (-oo,oo) such that f(x)=f(6-x)a n df^(prime)(0)=0=f^(prime)(x)^2=f(5)dot If n is the minimum number of roots of (f^(prime)(x)^2+f^(prime)(x)f^(x)=0 in the interval [0,6], then the value of n/2 is___

If f(x) is differentiable and strictly increasing function, then the value of ("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0)) is 1 (b) 0 (c) -1 (d) 2

If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2 (b) 8 (c) 16 (d) 4