Home
Class 12
MATHS
Let f(x y)=f(x)f(y)AAx , y in Ra n df i...

Let `f(x y)=f(x)f(y)AAx , y in Ra n df` is differentiable at `x=1` such that `f^(prime)(1)=1.` Also, `f(1)!=0,f(2)=3.` Then find `f^(prime)(2)dot`

Text Solution

Verified by Experts

The correct Answer is:
`3//2`

`f(xy)=f(x)f(y)" (1)"`
`f'(2)=underset(hrarr0)lim(f(2+h)-f(2))/(h)`
`=underset(hrarr0)lim(f(2(1+(h)/(2)))-f(2))/(h)`
`=underset(hrarr0)lim(f(2)f(1+(h)/(2))-f(2))/(h)`
`=(f(2))/(2)underset(hrarr0)lim(f(1+(h)/(2))-1)/((h)/(2))`
Replace x and y be 1 in equation (1). Then `f(1)=(f(1))^(2)`
`"or "f(1)=1`
`therefore" "f'(2)=(f(2))/(2)underset(hrarr0)lim(f(1+(h)/(2))-f(0))/((h)/(2))=(f(2)f'(1))/(2)=(3)/(2)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Suppose the function f(x) satisfies the relation f(x+y^3)=f(x)+f(y^3)dotAAx ,y in R and is differentiable for all xdot Statement 1: If f^(prime)(2)=a ,t h e nf^(prime)(-2)=a Statement 2: f(x) is an odd function.

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f: R->R satisfying |f(x)|lt=x^2,AAx in R be differentiable at x=0. Then find f^(prime)(0)dot

Let f(x)=x+f(x-1)forAAx in RdotIff(0)=1,fin df(100)dot

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then find the value of f(7)dot

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

Let f be a function such that f(x+y)=f(x)+f(y) for all xa n dya n df(x)=(2x^2+3x)g(x) for all x , where g(x) is continuous and g(0)=3. Then find f^(prime)(x)dot

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

Let f(x) be a non-constant twice differentiable function defined on (-oo,oo) such that f(x)=f(1-x)a n df^(prime)(1/4)=0. Then (a) f^(prime)(x) vanishes at least twice on [0,1] (b) f^(prime)(1/2)=0 (c) int_(-1/2)^(1/2)f(x+1/2)sinxdx=0 (d) int_(-1/2)^(1/2)f(t)e^(sinpit)dt=int_(1/2)^1f(1-t)e^(sinpit)dt