Home
Class 12
MATHS
Let f(x^m y^n)=mf(x)+nf(y) for all x , y...

Let `f(x^m y^n)=mf(x)+nf(y)` for all `x , y in R^+` and for all `m ,n in Rdot` If `f^(prime)(x)` exists and has the value `e/x ,` then find `(lim)_(xvec0)(f(1+x))/x`

Text Solution

Verified by Experts

The correct Answer is:
e

For any `x in R^(+),` we have
`therefore" "f(1)=f(1)+f(1)" [Putting x = y = m= n =1]"`
`"or "f(1)=0`
`"or "underset(xrarr0)lim(f(1+x))/(x)=underset(xrarr0)lim(f'(1+x))/(1)" (using L' Hopital's rule)"`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Single)|137 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise (Multiple)|22 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.8|15 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x+y)=f(x)dotf(y) for all xa n dydot Suppose f(5)=2a n df^(prime)(0)=3. Find f^(prime)(5)dot

f(x+y)=f(x).f(y) for all x,yinR and f(5)=2,f'(0)=3 then f'(5) is equal to

Let f(x+y)=f(x)+f(y)+2x y-1 for all real xa n dy and f(x) be a differentiable function. If f^(prime)(0)=cosalpha, then prove that f(x)>0AAx in Rdot

A function f: RvecR satisfies the equation f(x+y)=f(x)f(y) for all x , y in Ra n df(x)!=0fora l lx in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

Let f((x+y)/2)=(f(x)+f(y))/2fora l lr e a lxa n dy If f^(prime)(0) exists and equals -1a n df(0)=1,t h e n f i n d f(2)dot

If y=f(x^3),z=g(x^5),f^(prime)(x)=tanx ,a n dg^(prime)(x)=secx , then find the value of (lim)_(xvec0)(((dy)/(dz)))/x

If F :R to R satisfies f(x +y ) =f(x) + f(y) for all x ,y in R and f (1) =7 , then sum_(r=1)^(n) f(R ) is

If f((x+y)/3)=(2+f(x)+f(y))/3 for all x,y f'(2)=2 then find f(x)

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

A function f:RtoR is such that f(x+y)=f(x).f(y) for all x.y inR and f(x)ne0 for all x inR . If f'(0)=2 then f'(x) is equal to