Home
Class 12
MATHS
"If "log(e)(log(e) x-log(e)y)=e^(x^(2(y)...

`"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).`

Text Solution

Verified by Experts

The correct Answer is:
`(1+e^(e^(2)))/(e)`

We have
`log_(e)(log_(e)x-log_(e)y)=e^(x^(2)y)(1-log_(e)x)" ...(1)"`
`"For "x =e, log_(e)(1-log_(e)y)=0.`
`therefore" "y=1`
Differentiating (1), w.r.t.x, we get
`(1)/(log_(e)x-log_(e)y).((1)/(x)-(1)/(y)y')`
`=e^(x^(2)//y)cdot(2xy+x^(2)y')(1-log_(e)x)-(1)/(x)e^(x^(2)y)`
Putting x = e and y = 1, we get
`(1)/(1-0)cdot((1)/(e)-y')=0-(1)/(e)cdote^(e^(2))`
`therefore" "y'(e)=(1+e^(e^(2)))/(e)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

I=int \ log_e (log_ex)/(x(log_e x))dx

If int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k , then find the value of k.

If log ((x+y)/3)=1/2 (log x +log y) then find the value of x/y+y/x

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

lim_(xtoa) (log(x-a))/(log(e^(x)-e^(a)))

If log_(e)5 , log_(e)(5^(x) - 1) and log_(e)(5^(x) - 11/5) are in A.P., then the values of x are

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

If f(x) =|log_(e)|x||, then f'(x) equals

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=