Home
Class 12
MATHS
Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]...

Evaluate `int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx`

Text Solution

Verified by Experts

The correct Answer is:
`f(x)g'(x)-f'(x)g(x)+C`

`int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx`
`=intf(x)g^(n)(x)dx-int f^(n)(x)g(x)dx`
` =(f(x)g'(x)-int f'(x)g'(x)dx)-(g(x)f'(x)-int g'(x)f'(x)dx)`
`=f(x)g'(x)-f'(x)g(x)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Single)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.8|7 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int[f(x)g^(x)-f^(x)g(x)]dx

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

By using the properties of definite integrals, evaluate the integrals Show that int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx , if f and g are defined as f(x)=f(a-x) and g(x)+g(a-x)=4 .

Evaluate: ifintg(x)dx=g(x),t h e nintg(x){f(x)+f^(prime)(x)}dx

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=

Using the first principle, prove that: d/(dx)(f(x)g(x))=f(x)d/(dx)(g(x))+g(x)d/(dx)(f(x))

Consider two differentiable functions f(x),g(x) satisfying 6intf(x)g(x)dx=x^(6)+3x^(4)+3x^(2)+c and 2 int(g(x)dx)/(f(x))=x^(2)+c, " where " f(x) gt 0 AA x in R. int (g(x)-f(x))dx is equal to

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is