Home
Class 12
MATHS
If In=int( lnx)^n dx then In+nI(n-1)...

If `I_n=int( lnx)^n dx` then `I_n+nI_(n-1)`

A

`(("In "x)^(n))/(x)+C`

B

`x("In "x)^(n-1)+C`

C

`x("In "x)^(n)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I_(n)=x("In "x)^(n)-int (x(n)("In "x)^(n-1))/(x)dx+C=x ("In "x)^(n)-n I_((n-1))+C`
or `I_(n)+nI_(n-1)=x("In "x)^(n)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11))i se q u a lto___

If I_(n)=int_(0)^(pi/2) sin^(x)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

If U_n=int_0^1x^n(2-x)^ndxa n dV_n=int_0^1x^n(1-x)^n dx ,n in N , and if (V_n)/(U_n)=1024 , then the value of n is________

IfI_n=int_0^pie^x(sin"x")^("n")dx ,t h e n(I_3)/(I_1)"is equal to" 3/5 (b) 1/5 (c) 1 (d) 2/5

If I_K=int_1^e(lnx)^kdx(k in I^+)dx(k in I^+), then find the value of I_4dot

IfI_n=int_0^(pi/4)tan^n xdx ,(n >1 and is an integer), then I_n+I_(n-2)=1/(n+1) I_n+I_(n-2)=1/(n-1) I_2+I_4,I_4+I_6, ,a r einHdotPdot 1/(2(n+1))

IfI_n=int_0^1(dx)/((1+x^2)^n),w h e r en in N , which of the following statements hold good? 2nI_(n+1)=2^(-n)+(2n-1)I_n I_2=pi/8+1/4 (c) I_2=pi/8-1/4 I_3=(3pi)/(32)+1/4

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

Let I_n=int tan^n x dx, (n>1) . If I_4+I_6=a tan^5 x + bx^5 + C , Where C is a constant of integration, then the ordered pair (a,b) is equal to :