Home
Class 12
MATHS
Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+...

`Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C ,` then `f(x)=1/2x^2` (b) `g(x)=logx` `A=1` (d) none of these

A

`f(x)=(1)/(2)x^(2)`

B

`g(x)=log x`

C

`A=1`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D

` intx log(1+(1)/(x))dx `
`=int xlog(x+1)dx-int x logxdx `
` =(x^(2))/(2)log(x+1)-(1)/(2)int(x^(2))/(x+1)dx-(x^(2))/(2)logx+(1)/(2)int(x^(2))/(x)dx+C`
` =(x^(2))/(2)log(x+1)-(1)/(2)int(x-1+(1)/(x+1))dx-(x^(2))/(2)logx+(1)/(4)x^(2)+C`
`=(x^(2))/(2)log(x+1)-(x^(2))/(2)logx-(1)/(2)((x^(2))/(2)-x)-(1)/(2)log(x+1)+(1)/(4)x^(2)+C`
`=(x^(2))/(2)log(x+1)-(x^(2))/(2)logx-(1)/(2)log(x+1)+(1)/(2)x+C`
`"Hence, "f(x)=(x^(2))/(2)-(1)/(2),g(x)=-(1)/(2)logx, " and " A=(1)/(2).`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then (a) f(x)=1/2x^2 (b) g(x)=logx (c) A=1 (d) none of these

If f(x) =x^(2) -2,g (x) =2x+ 1 then f^(@) g (x)

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

(log)_(x-1)x (log)_(x-2)(x-1) (log)_(x-12)(x-11)=2,x is equal to: 9 (b) 16 (c) 25 (d) none of these

If f(x)=x+tanxa n df is the inverse of g, then g^(prime)(x) equals (a) 1/(1+[g(x)-x]^2) (b) 1/(2-[g(x)-x]^2) (c) 1/(2+[g(x)-x]^2) (d) none of these

f(x)=(1+x) g(x)=(2x-1) Show that fo(g(x))=go(f(x))

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)-|f(x)| (d) none of these

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2) equals 0 (b) -1 (c) 1 (d) none of these

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot